Skip to main content
Log in

Geometric variable designs of cam/post mechanisms influence the kinematics of knee implants

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

Reproducing the femoral rollback through specially designed mechanism in knee implants is required to achieve full knee function in total knee arthroplasty. Most contemporary implants use cam/post mechanism to replace the function of Posterior Cruciate Ligament. This study was aimed to determine the most appropriate cam and post designs to produce normal femoral rollback of the knee.

Methods

Three different cams (triangle, ellipse, and circle) and three different posts (straight, convex, concave) geometries were considered in this study and were analysed using kinematic analyses. Femoral rollback did not occur until reaching 50° of knee flexion. Beyond this angle, two of the nine combinations demonstrate poor knee flexion and were eliminated from the study.

Results

The combination of circle cam with concave post, straight post and convex post showed 15.6, 15.9 and 16.1 mm posterior translation of the femur, respectively. The use of ellipse cam with convex post and straight post demonstrated a 15.3 and 14.9 mm femoral rollback, whilst the combination of triangle cam with convex post and straight post showed 16.1 and 15.8 mm femoral rollback, respectively.

Conclusion

The present study demonstrates that the use of circle cam and convex post created the best femoral rollback effect which in turn produces the highest amount of knee flexion. The findings of the study suggest that if the design is applied for knee implants, superior knee flexion may be possible for future patients.

Level of evidence

IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Akasaki Y, Matsuda S, Shimoto T, Miura H, Higaki H, Iwamoto Y (2008) Contact stress analysis of the conforming post-cam mechanism in posterior-stabilized total knee arthroplasty. J Arthroplasty 23:736–743

    Article  PubMed  Google Scholar 

  2. Argenson JN, Scuderi GR, Komistek RD, Scott WN, Kelly MA, Aubaniac JM (2005) In vivo kinematic evaluation and design considerations related to high flexion in total knee arthroplasty. J Biomech 38:277–284

    Article  PubMed  Google Scholar 

  3. Banks S, Bellemans J, Nozaki H, Whiteside LA, Harman M, Hodge WA (2003) Knee motions during maximum flexion in fixed and mobile-bearing arthroplasties. Clin Orthop Relat Res 410:131–138

    Article  PubMed  Google Scholar 

  4. Bin SI, Nam TS (2007) Early results of high-flex total knee arthroplasty: comparison study at 1 year after surgery. Knee Surg Sports Traumatol Arthrosc 15:350–355

    Article  PubMed  Google Scholar 

  5. de Jong RJ, Heesterbeek PJ, Wymenga AB (2010) A new measurement technique for the tibiofemoral contact point in normal knees and knees with TKR. Knee Surg Sports Traumatol Arthrosc 18:388–393

    Article  PubMed  Google Scholar 

  6. Dennis DA, Komistek RD, Mahfouz MR, Haas BD, Stiehl JB (2003) Multicenter determination of in vivo kinematics after total knee arthroplasty. Clin Orthop Relat Res 416:37–57

    Article  PubMed  Google Scholar 

  7. Dennis DA, Komistek RD, Mahfouz MR (2003) In vivo fluoroscopic analysis of fixed-bearing total knee replacements. Clin Orthop Relat Res 410:114–130

    Article  PubMed  Google Scholar 

  8. Emodi GJ, Callaghan JJ, Pedersen DR, Brown TD (1999) Posterior cruciate ligament function following total knee arthroplasty: the effect of joint line elevation. Iowa Orthop J 19:82–92

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Godest AC, de Cloke CS, Taylor M, Gregson PJ, Keane AJ, Sathasivan S et al (2003) A computational model for the prediction of total knee replacement kinematics in the sagittal plane. J Biomech 33:435–442

    Article  Google Scholar 

  10. Hartford JM, Banit D, Hall K, Kaufer H (2001) Radiographic analysis of low contact stress meniscal bearing total knee replacements. J Bone Joint Surg Am 83-A:229–234

    CAS  PubMed  Google Scholar 

  11. Hefzy MS, Kelly BP, Cooke TD (1998) Kinematics of the knee joint in deep flexion: a radiographic assessment. Med Eng Phys 20:302–307

    Article  CAS  PubMed  Google Scholar 

  12. Kim YH, Sohn KS, Kim JS (2005) Range of motion of standard and high-flexion posterior stabilized total knee prostheses. A prospective, randomized study. J Bone Joint Surg Am 87:1470–1475

    Article  PubMed  Google Scholar 

  13. Li G, Most E, Sultan PG, Schule S, Zayontz S, Park SE et al (2004) Knee kinematics with a high-flexion posterior stabilized total knee prosthesis: an in vitro robotic experimental investigation. J Bone Joint Surg Am 86-A:1721–1729

    PubMed  Google Scholar 

  14. Limbert G, Middleton J (2006) A constitutive model of the posterior cruciate ligament. Med Eng Phys 28:99–113

    Article  PubMed  Google Scholar 

  15. Lin KL, Huang CH, Liu YL, Chen WC, Chang TW, Yang CT et al (2011) Influence of post-cam design of posterior stabilized knee prosthesis on tibiofemoral motion during high knee flexion. Clin Biomech 26:847–852

    Article  Google Scholar 

  16. Lionberger DR, Eggers MD, Brewer KE, Fang L (2012) Improved knee flexion following high-flexion total knee arthroplasty. J Orthop Surg Res 7:22

    Article  PubMed Central  PubMed  Google Scholar 

  17. Lu TW, Tsai TY, Kuo MY, Hsu HC, Chen HL (2008) In vivo three-dimensional kinematics of the normal knee during active extension under unloaded and loaded conditions using single-plane fluoroscopy. Med Eng Phys 30:1004–1012

    Article  CAS  PubMed  Google Scholar 

  18. Maruyama S, Yoshiya S, Matsui N, Kuroda R, Kurosaka M (2004) Functional comparison of posterior cruciate-retaining versus posterior stabilized total knee arthroplasty. J Arthroplasty 19:349–353

    Article  PubMed  Google Scholar 

  19. Most E, Li G, Sultan PG, Park SE, Rubash HE (2005) Kinematic analysis of conventional and high-flexion cruciate-retaining total knee arthroplasties: an in vitro investigation. J Arthroplasty 20:529–535

    Article  PubMed  Google Scholar 

  20. Nakagawa S, Johal P, Pinskerova V, Komatsu T, Sosna A, Williams A et al (2004) The posterior cruciate ligament during flexion of the normal knee. J Bone Joint Surg Br 86:450–456

    Article  CAS  PubMed  Google Scholar 

  21. Padua R, Ceccarelli E, Bondi R, Campi A, Padua L (2007) Range of motion correlates with patient perception of TKA outcome. Clin Orthop Relat Res 460:174–177

    CAS  PubMed  Google Scholar 

  22. Pandit H, van Duren BH, Price M, Tilley S, Gill HS, Thomas NP, Murray DW (2013) Constraints in posterior-stabilised TKA kinematics: a comparison of two generations of an implant. Knee Surg Sports Traumatol Arthrosc 21(12):2800–2809

    Article  PubMed  Google Scholar 

  23. Pereira GC, Walsh M, Wasserman B, Banks S, Jaffe WL, Di Cesare PE (2008) Kinematics of the stiff total knee arthroplasty. J Arthroplasty 23:894–901

    Article  PubMed  Google Scholar 

  24. Pritchett JW (2004) Patient preferences in knee prostheses. J Bone Joint Surg Br 86:979–982

    Article  CAS  PubMed  Google Scholar 

  25. Ranawat CS (2003) Design may be counterproductive for optimizing flexion after TKR. Clin Orthop Relat Res 416:174–176

    Article  PubMed  Google Scholar 

  26. Robertsson O, Dunbar MJ (2001) Patient satisfaction compared with general health and disease-specific questionnaires in knee arthroplasty patients. J Arthroplasty 16:476–482

    Article  CAS  PubMed  Google Scholar 

  27. Tamaki M, Tomita T, Watanabe T, Yamazaki T, Yoshikawa H, Sugamoto K (2009) In vivo kinematic analysis of a high-flexion, posterior-stabilized, mobile-bearing knee prosthesis in deep knee bending motion. J Arthroplasty 24:972–978

    Article  PubMed  Google Scholar 

  28. van Duren BH, Pandit H, Beard DJ, Zavatsky AB, Gallagher JA, Thomas NP et al (2007) How effective are added constraints in improving TKR kinematics? J Biomech 40(1):S31–S37

    Article  PubMed  Google Scholar 

  29. Walker PS, Blunn GW, Broome DR, Perry J, Watkins A, Sathasivam S et al (1997) A knee simulating machine for performance evaluation of total knee replacements. J Biomech 30:83–89

    Article  CAS  PubMed  Google Scholar 

  30. Walker PS, Sussman-Fort JM, Yildirim G, Boyer J (2009) Design features of total knees for achieving normal knee motion characteristics. J Arthroplasty 24:475–483

    Article  PubMed  Google Scholar 

  31. Weiss JM, Noble PC, Conditt MA, Kohl HW, Roberts S, Cook KF et al (2002) What functional activities are important to patients with knee replacements? Clin Orthop Relat Res 404:172–188

    Article  PubMed  Google Scholar 

  32. Wilson DR, Feikes JD, O’Connor JJ (1998) Ligaments and articular contact guide passive knee flexion. J Biomech 31:1127–1136

    Article  CAS  PubMed  Google Scholar 

  33. Yu CH, Walker PS, Dewar ME (2001) The effect of design variables of condylar total knees on the joint forces in step climbing based on a computer model. J Biomech 34:1011–1021

    Article  CAS  PubMed  Google Scholar 

  34. Zelle J, Heesterbeek PJ, De Waal Malefijt M, Verdonschot N (2010) Numerical analysis of variations in posterior cruciate ligament properties and balancing techniques on total knee arthroplasty loading. Med Eng Phys 32:700–707

    Article  CAS  PubMed  Google Scholar 

  35. Zelle J, Van der Zanden AC, De Waal Malefijt M, Verdonschot N (2009) Biomechanical analysis of posterior cruciate ligament retaining high-flexion total knee arthroplasty. Clin Biomech 24:842–849

    Article  CAS  Google Scholar 

  36. Zingde SM, Leszko F, Sharma A, Mahfouz MR, Komistek RD, Dennis DA (2014) In vivo determination of cam-post engagement in fixed and mobile-bearing TKA. Clin Orthop Relat Res 472(1):254–262

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study has been supported by eScience Fund research grant from the Ministry of Science, Technology and Innovation Malaysia and FRGS research grant from the Ministry of Higher Education Malaysia. Authors also acknowledge financial support from Universiti Teknologi Malaysia RU Grant. More than one of the authors of this paper is supported by the University of Malaya HIR-MoE (Reference number - UM.C/625/1/HIR/ MOHE/MED/04, Account number - E000003-20001) research grant initiative. All authors have no competing interests and the nature of work did not require any ethical approval.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammed Rafiq Abdul Kadir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fallahiarezoodar, A., Abdul Kadir, M.R., Alizadeh, M. et al. Geometric variable designs of cam/post mechanisms influence the kinematics of knee implants. Knee Surg Sports Traumatol Arthrosc 22, 3019–3027 (2014). https://doi.org/10.1007/s00167-014-3227-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3227-7

Keywords

Navigation