Skip to main content
Log in

Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction

  • Knee
  • Published:
Knee Surgery, Sports Traumatology, Arthroscopy Aims and scope

Abstract

Purpose

To examine the magnitude and speed of knee extensor torque production at the initiation of advanced anterior cruciate ligament (ACL) reconstruction rehabilitation and the associations with self-reported knee function.

Methods

Twenty-eight subjects who were 12 weeks post-ACL reconstruction and 28 age- and sex-matched physically active controls participated in this study. Knee extensor torque was assessed bilaterally with an isokinetic dynamometer at 60°/s. The variables of interest were peak torque, average rate of torque development, time to peak torque and quadriceps symmetry index. Knee function was assessed with the International Knee Documentation Committee Subjective Knee Form (IKDC-SKF).

Results

Peak torque and average rate of torque development were lower on the surgical side compared to the non-surgical side and controls. Quadriceps symmetry index was lower in subjects with ACL reconstruction compared to controls. On the surgical side, average rate of torque development was positively correlated with IKDC-SKF score (r = 0.379) while time to peak torque was negatively correlated with IKDC-SKF score (r = −0.407).

Conclusions

At the initiation of advanced ACL reconstruction rehabilitation, the surgical side displayed deficits in peak torque and average rate of torque development. A higher rate of torque development and shorter time to peak torque were associated with better self-reported knee function. The results suggest that the rate of torque development should be addressed during advanced ACL reconstruction rehabilitation and faster knee extensor torque generation may lead to better knee function.

Level of evidence

III.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326

    Article  PubMed  Google Scholar 

  2. Ageberg E, Roos HP, Silbernagel KG, Thomeé R, Roos EM (2009) Knee extension and flexion muscle power after anterior cruciate ligament reconstruction with patellar tendon graft or hamstring tendons graft: a cross-sectional comparison 3 years post surgery. Knee Surg Sports Traumatol Arthrosc 17:162–169

    Article  PubMed  Google Scholar 

  3. Andersen LL, Andersen JL, Magnusson SP, Suetta C, Madsen JL, Christensen LR, Aagaard P (2005) Changes in the human muscle force-velocity relationship in response to resistance training and subsequent detraining. J Appl Physiol 99:87–94

    Article  PubMed  Google Scholar 

  4. Angelozzi M (2012) Rate of Force Development as an Adjunctive Outcome Measure for Return-to-Sport Decisions After Anterior Cruciate Ligament Reconstruction. J Orthop Sports Phys Ther 42(9):772–780

    Article  PubMed  Google Scholar 

  5. Barber-Westin SD, Noyes FR (2011) Factors used to determine return to unrestricted sports activities after anterior cruciate ligament reconstruction. Arthroscopy 27:1697–1705

    Article  PubMed  Google Scholar 

  6. Beynnon BD, Johnson RJ, Abate JA, Fleming BC, Nichols CE (2005) Treatment of anterior cruciate ligament injuries, Part 2. Am J Sports Med 33:1751–1767

    Article  PubMed  Google Scholar 

  7. Boden BP, Dean GS, Feagin JA Jr, Garrett WE Jr (2000) Mechanisms of anterior cruciate ligament injury. Orthopedics 23:573–578

    CAS  PubMed  Google Scholar 

  8. Bojsen-Møller J, Magnusson SP, Rasmussen LR, Kjaer M, Aagaard P (2005) Muscle performance during maximal isometric and dynamic contractions is influenced by the stiffness of the tendinous structures. J Appl Physiol 99:986–994

    Article  PubMed  Google Scholar 

  9. Cardone C, Menegassi Z, Emygdio R (2004) Isokinetic assessment of muscle strength following anterior cruciate ligament reconstruction. Isokinet Exerc Sci 12:173–177

    Google Scholar 

  10. Chmielewski TL, Trumble TN, Joseph A-M, Shuster J, Indelicato PA, Moser MW, Cicuttini FM, Leeuwenburgh C (2012) Urinary CTX-II concentrations are elevated and associated with knee pain and function in subjects with ACL reconstruction. Osteoarthr Cartil 20:1294–1301

    Article  CAS  PubMed  Google Scholar 

  11. Cronin J, McNair PJ, Marshall RN (2003) Lunge performance and its determinants. J Sports Sci 21:49–57

    Article  PubMed  Google Scholar 

  12. Daniel DM, Stone ML, Dobson BE, Fithian DC, Rossman DJ, Kaufman KR (1994) Fate of the ACL-injured patient. A prospective outcome study. Am J Sports Med 22:632–644

    Article  CAS  PubMed  Google Scholar 

  13. Dvir Z (2004) Isokinetics: muscle testing, interpretation, and clinical applications. Churchill Livingstone, London, pp 140–141

    Google Scholar 

  14. Fernandes TL, Protta TR, Fregni F, Neto RB, Pedrinelli A, Camanho GL, Hernandez AJ (2012) Isokinetic muscle strength and knee function associated with double femoral pin fixation and fixation with interference screw in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol. 20:275–280

    Article  Google Scholar 

  15. Fitzgerald GK, Piva SR, Irrgang JJ (2003) A modified neuromuscular electrical stimulation protocol for quadriceps strength training following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 33:492–501

    Article  PubMed  Google Scholar 

  16. Gobbi A, Tuy B, Mahajan S, Panuncialman I (2003) Quadrupled bone-semitendinosus anterior cruciate ligament reconstruction: a clinical investigation in a group of athletes. Arthroscopy 19:691–699

    Article  PubMed  Google Scholar 

  17. Griffin LY, Agel J, Albohm MJ, Arendt EA, Dick RW, Garrett WE, Garrick JG, Hewett TE, Huston L, Ireland ML, Johnson RJ, Kibler WB, Lephart S, Lewis JL, Lindenfeld TN, Mandelbaum BR, Marchak P, Teitz CC, Wojtys EM (2000) Noncontact anterior cruciate ligament injuries: risk factors and prevention strategies. J Am Acad Orthop Surg 8:141–150

    CAS  PubMed  Google Scholar 

  18. Hess T, Duchow J, Roland S, Kohn D (2002) Single- versus Two-Incision Technique in Anterior Cruciate Ligament Replacement: influence on Postoperative Muscle Function. Am J Sports Med 30:27–31

    PubMed  Google Scholar 

  19. Hiemstra LA, Webber S, MacDONALD PB, Kriellaars DJ (2000) Knee strength deficits after hamstring tendon and patellar tendon anterior cruciate ligament reconstruction. Med Sci Sports Exerc 32:1472–1479

    Article  CAS  PubMed  Google Scholar 

  20. Hootman J, FitzGerald S, Macera C, Blair S (2004) Lower Extremity Muscle Strength and Risk of Self-Reported Hip or Knee Osteoarthritis. J Phys Act Health 1:321–330

    Google Scholar 

  21. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Kurosaka M, Neyret P, Richmond JC, Shelborne KD (2001) Development and validation of the international knee documentation committee subjective knee form. Am J Sports Med 29:600–613

    CAS  PubMed  Google Scholar 

  22. Irrgang JJ, Anderson AF, Boland AL, Harner CD, Neyret P, Richmond JC, Shelbourne KD, International Knee Documentation Committee (2006) Responsiveness of the International Knee Documentation Committee Subjective Knee Form. Am J Sports Med 34:1567–1573

    Article  PubMed  Google Scholar 

  23. Järvelä T, Kannus P, Latvala K, Järvinen M (2002) Simple Measurements in Assessing Muscle Performance After an ACL Reconstruction. Int J Sports Med 23:196–201

    Article  PubMed  Google Scholar 

  24. Keays SL, Bullock-Saxton JE, Newcombe P, Keays AC (2003) The relationship between knee strength and functional stability before and after anterior cruciate ligament reconstruction. J Orthop Res 21:231–237

    Article  CAS  PubMed  Google Scholar 

  25. Keays SL, Newcombe PA, Bullock-Saxton JE, Bullock MI, Keays AC (2010) Factors involved in the development of osteoarthritis after anterior cruciate ligament surgery. Am J Sports Med 38:455–463

    Article  PubMed  Google Scholar 

  26. Kim HJ, Kramer JF (1997) Effectiveness of visual feedback during isokinetic exercise. J Orthop Sports Phys Ther 26:318–323

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi A, Higuchi H, Terauchi M, Kobayashi F, Kimura M, Takagishi K (2004) Muscle performance after anterior cruciate ligament reconstruction. Int Orthop 28:48–51

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Konishi Y, Fukubayashi T, Takeshita D (2002) Mechanism of quadriceps femoris muscle weakness in patients with anterior cruciate ligament reconstruction. Scand J Med Sci Sports 12:371–375

    Article  CAS  PubMed  Google Scholar 

  29. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS, Fleck SJ, Franklin B, Fry AC, Hoffman JR, Newton RU, Potteiger J, Stone MH, Ratamess NA, Triplett-McBride T (2002) American College of Sports Medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc 34:364–380

    Article  PubMed  Google Scholar 

  30. Lautamies R, Harilainen A, Kettunen J, Sandelin J, Kujala UM (2008) Isokinetic quadriceps and hamstring muscle strength and knee function 5 years after anterior cruciate ligament reconstruction: comparison between bone-patellar tendon-bone and hamstring tendon autografts. Knee Surg Sports Traumatol Arthrosc 16:1009–1016

    Article  PubMed  Google Scholar 

  31. Lentz TA, Zeppieri G Jr, Tillman SM, Indelicato PA, Moser MW, George SZ, Chmielewski TL (2012) Return to preinjury sports participation following anterior cruciate ligament reconstruction: contributions of demographic, knee impairment, and self-report measures. J Orthop Sports Phys Ther 42:893–901

    Article  PubMed Central  PubMed  Google Scholar 

  32. Lewek M, Rudolph K, Axe M, Snyder-Mackler L (2002) The effect of insufficient quadriceps strength on gait after anterior cruciate ligament reconstruction. Clin Biomech 17:56–63

    Article  Google Scholar 

  33. Lohmander LS, Englund PM, Dahl LL, Roos EM (2007) The Long-term Consequence of Anterior Cruciate Ligament and Meniscus Injuries Osteoarthritis. Am J Sports Med 35:1756–1769

    Article  PubMed  Google Scholar 

  34. McNair PJ, Depledge J, Brettkelly M, Stanley SN (1996) Verbal encouragement: effects on maximum effort voluntary muscle: action. Br J Sports Med 30:243–245

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Mikkelsen C, Werner S, Eriksson E (2000) Closed kinetic chain alone compared to combined open and closed kinetic chain exercises for quadriceps strengthening after anterior cruciate ligament reconstruction with respect to return to sports: a prospective matched follow-up study. Knee Surg Sports Traumatol. 8:337–342

    Article  CAS  Google Scholar 

  36. Pääsuke M, Ereline J, Gapeyeva H (2001) Knee extension strength and vertical jumping performance in nordic combined athletes. J Sports Med Phys. 41:354–361

    Google Scholar 

  37. Palmieri-Smith RM, Thomas AC (2009) A neuromuscular mechanism of posttraumatic osteoarthritis associated with ACL injury. Exerc Sport Sci Rev 37:147–153

    Article  PubMed  Google Scholar 

  38. Petschnig R, Baron R, Albrecht M (1998) The relationship between isokinetic quadriceps strength test and hop tests for distance and one-legged vertical jump test following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 28:23–31

    Article  CAS  PubMed  Google Scholar 

  39. Von Porat A, Henriksson M, Holmström E, Thorstensson CA, Mattsson L, Roos EM (2006) Knee kinematics and kinetics during gait, step and hop in males with a 16 years old ACL injury compared with matched controls. Knee Surg Sports Traumatol Arthrosc 14:546–554

    Article  Google Scholar 

  40. Schmitt LC, Paterno MV, Hewett TE (2012) The impact of quadriceps femoris strength asymmetry on functional performance at return to sport following anterior cruciate ligament reconstruction. J Orthop Sports Phys Ther 42:750–759

    Article  PubMed Central  PubMed  Google Scholar 

  41. Sekiya I, Muneta T, Ogiuchi T, Yagishita K, Yamamoto H (1998) Significance of the Single-Legged Hop Test to the Anterior Cruciate Ligament-Reconstructed Knee in Relation to Muscle Strength and Anterior Laxity. Am J Sports Med 26:384–388

    CAS  PubMed  Google Scholar 

  42. Sheppard JM, Cormack S, Taylor K-L, McGuigan MR, Newton RU (2008) Assessing the force-velocity characteristics of the leg extensors in well-trained athletes: the incremental load power profile. J Strength Cond Res. 22:1320–1326

    Article  PubMed  Google Scholar 

  43. Slemenda C, Heilman DK, Brandt KD, Katz BP, Mazzuca SA, Braunstein EM, Byrd D (1998) Reduced quadriceps strength relative to body weight: a risk factor for knee osteoarthritis in women? Arthritis Rheum 41:1951–1959

    Article  CAS  PubMed  Google Scholar 

  44. Wilk KE, Andrews JR (1992) Current Concepts in the Treatment of Anterior Cruciate Ligament Disruption. J Orthop Sports Phys Ther 15:279–293

    Article  CAS  PubMed  Google Scholar 

  45. Wilk KE, Arrigo C, Andrews JR, Clancy WG (1999) Rehabilitation After Anterior Cruciate Ligament Reconstruction in the Female Athlete. J Athl Train. 34:177–193

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Wilk KE, Romaniello WT, Soscia SM, Arrigo CA, Andrews JR (1994) The relationship between subjective knee scores, isokinetic testing, and functional testing in the ACL-reconstructed knee. J Orthop Sports Phys Ther 20:60–73

    Article  CAS  PubMed  Google Scholar 

  47. Winters JD, Christiansen CL, Stevens-Lapsley JE (2014) Preliminary investigation of rate of torque development deficits following total knee arthroplasty. Knee 21:382–386

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Chris Koenig, ATC, and Matt Walser, ATC, PAC for their assistance with subject recruitment. The authors also acknowledge Patty Hovis, MS; Melissa Cosgrave, DPT; and Caroline Davis, BS; for their assistance with testing and data entry. This study was funded by a grant from the Brooks Rehabilitation Research Endowment. Dr. Chmielewski’s effort on this project was supported by a grant from the National Institutes of Health (K01-HD052713).

Conflict of interest

The authors declare that they have no conflict of interest in relation to this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao-Jung Hsieh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hsieh, CJ., Indelicato, P.A., Moser, M.W. et al. Speed, not magnitude, of knee extensor torque production is associated with self-reported knee function early after anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc 23, 3214–3220 (2015). https://doi.org/10.1007/s00167-014-3168-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00167-014-3168-1

Keywords

Navigation