Skip to main content
Log in

A one-dimensional mathematical model for shear-induced droplet formation in co-flowing fluids

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Shear-induced droplet formation is important in many industrial applications, primarily focusing on droplet sizes and pinch-off frequency. We propose a one-dimensional mathematical model that describes the effect of shear forces on the droplet interface evolution. The aim of this paper is to simulate paraffin wax droplets in a co-flowing fluid using the proposed model to estimate the droplet volume rate for different flow velocities. Thus, the study focuses only on the dripping regime. This one-dimensional model has a single parameter that arises from the force balance on the interface. This parameter is related to the shear layer thickness and hence influenced by the change in quantities like velocity, viscosity, and surface tension. The correlation describing the dependence of the parameter on these quantities using non-dimensional numbers is presented. The model is then cross-validated with the previous computational and experimental data. We use PETSc, an open-source solver toolkit, to implement our model using a mixed finite element discretization. We present the simulation results for liquid paraffin wax under fast-moving airflow with a range of velocities.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Derby, B.: Inkjet printing of functional and structural materials: fluid property requirements, feature stability, and resolution. Annu. Rev. Mater. Res. 40, 395–414 (2010)

    Article  Google Scholar 

  2. Takagi, D., Lin, W., Matsumoto, T., Yaginuma, H., Hemmi, N., Hatada, S., Seo, M.: High-precision three-dimensional inkjet technology for live cell bioprinting. Int. J. Bioprint. 5(2) (2019)

  3. Kim, J.: Spray cooling heat transfer: the state of the art. Int. J. Heat Fluid Flow 28(4), 753–767 (2007)

    Article  Google Scholar 

  4. Gao, L., McCarthy, T.J.: A perfectly hydrophobic surface (\(\theta \)a/\(\theta \)r= 180/180). J. Am. Chem. Soc. 128(28), 9052–9053 (2006)

    Article  Google Scholar 

  5. Inoue, C., Maeda, I.: On the droplet entrainment from gas-sheared liquid film. Phys. Fluids 33(1), 011705 (2021)

    Article  Google Scholar 

  6. Berna, C., Escrivá, A., Muñoz-Cobo, J., Herranz, L.: Review of droplet entrainment in annular flow: characterization of the entrained droplets. Prog. Nucl. Energy 79, 64–86 (2015)

    Article  Google Scholar 

  7. Cramer, C., Fischer, P., Windhab, E.J.: Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 59(15), 3045–3058 (2004)

    Article  Google Scholar 

  8. Teh, S.-Y., Lin, R., Hung, L.-H., Lee, A.P.: Droplet microfluidics. Lab Chip 8(2), 198–220 (2008)

    Article  Google Scholar 

  9. Dewandre, A., Rivero-Rodriguez, J., Vitry, Y., Sobac, B., Scheid, B.: Microfluidic droplet generation based on non-embedded co-flow-focusing using 3d printed nozzle. Sci. Rep. 10(1), 1–17 (2020)

    Article  Google Scholar 

  10. Savart, F.: Wemoire sur la constitution des veines liquids lancees par des orifices circulaires en mince paroi. Ann. Chim. 53, 337–386 (1833)

    Google Scholar 

  11. Laplace, P.S.: Traité de mécanique céleste, vol. 4. Supplements au Livre X (1805)

  12. Young, T.: III. An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Google Scholar 

  13. Plateau, J.A.F.: Experimental and theoretical researches on figures of equilibrium of a liquid mass withdrawn from action of gravity. Trans. Ann. Rep. Smithsonian Inst. 207 (1863)

  14. Rayleigh, L.: On the instability of jets. Proc. Lond. Math. Soc. 1(1), 4–13 (1878)

    Article  MathSciNet  Google Scholar 

  15. Eggers, J., Villermaux, E.: Physics of liquid jets. Rep. Prog. Phys. 71(3), 036601 (2008)

    Article  Google Scholar 

  16. Eggers, J.: Universal pinching of 3d axisymmetric free-surface flow. Phys. Rev. Lett. 71(21), 3458 (1993)

    Article  Google Scholar 

  17. Eggers, J.: Theory of drop formation. Phys. Fluids 7(5), 941–953 (1995)

    Article  MathSciNet  Google Scholar 

  18. Constantin, P., Dupont, T.F., Goldstein, R.E., Kadanoff, L.P., Shelley, M.J., Zhou, S.-M.: Droplet breakup in a model of the hele-shaw cell. Phys. Rev. E 47(6), 4169 (1993)

    Article  MathSciNet  Google Scholar 

  19. Bertozzi, A.L., Brenner, M.P., Dupont, T.F., Kadanoff, L.P.: Singularities and Similarities in Interface Flows. Springer, Heidelberg (1994)

    Book  Google Scholar 

  20. Goldstein, R.E., Pesci, A.I., Shelley, M.J.: Topology transitions and singularities in viscous flows. Phys. Rev. Lett. 70(20), 3043 (1993)

    Article  Google Scholar 

  21. Chaudhary, K., Redekopp, L.: The nonlinear capillary instability of a liquid jet. Part 1. Theory. J. Fluid Mech. 96(2), 257–274 (1980)

    Article  Google Scholar 

  22. Chaudhary, K., Maxworthy, T.: The nonlinear capillary instability of a liquid jet Part 2 Experiments on jet behaviour before droplet formation. J. Fluid Mech. 96(2), 275–286 (1980)

    Article  Google Scholar 

  23. Eggers, J.: Nonlinear dynamics and breakup of free-surface flows. Rev. Mod. Phys. 69(3), 865 (1997)

    Article  Google Scholar 

  24. Ambravaneswaran, B., Wilkes, E.D., Basaran, O.A.: Drop formation from a capillary tube: comparison of one-dimensional and two-dimensional analyses and occurrence of satellite drops. Phys. Fluids 14(8), 2606–2621 (2002)

    Article  MathSciNet  Google Scholar 

  25. Zhang, X., Basaran, O.A.: An experimental study of dynamics of drop formation. Phys. Fluids 7(6), 1184–1203 (1995)

    Article  Google Scholar 

  26. Eggers, J., Dupont, T.F.: Drop formation in a one-dimensional approximation of the Navier-stokes equation. J. Fluid Mech. 262, 205–221 (1994)

    Article  MathSciNet  Google Scholar 

  27. Nathawani, D.K., Knepley, M.G.: Droplet formation simulation using mixed finite elements. Phys. Fluids 34(6), 064105 (2022). https://doi.org/10.1063/5.0089752

    Article  Google Scholar 

  28. Umbanhowar, P., Prasad, V., Weitz, D.A.: Monodisperse emulsion generation via drop break off in a coflowing stream. Langmuir 16(2), 347–351 (2000)

    Article  Google Scholar 

  29. Garstecki, P., Stone, H.A., Whitesides, G.M.: Mechanism for flow-rate controlled breakup in confined geometries: a route to monodisperse emulsions. Phys. Rev. Lett. 94(16), 164501 (2005)

    Article  Google Scholar 

  30. Wilkes, E.D., Phillips, S.D., Basaran, O.A.: Computational and experimental analysis of dynamics of drop formation. Phys. Fluids 11(12), 3577–3598 (1999)

    Article  Google Scholar 

  31. Taassob, A., Manshadi, M.K.D., Bordbar, A., Kamali, R.: Monodisperse non-newtonian micro-droplet generation in a co-flow device. J. Braz. Soc. Mech. Sci. Eng. 39, 2013–2021 (2017)

    Article  Google Scholar 

  32. Nathawani, D.K.: Droplet formation: one-dimensional mathematical model and computations. PhD thesis, State University of New York at Buffalo (2023)

  33. Donea, J., Huerta, A.: Finite Element Methods for Flow Problems. Wiley, Hoboken (2003)

    Book  Google Scholar 

  34. Lee, R.L., Gresho, P.M., Sani, R.L.: Smoothing techniques for certain primitive variable solutions of the navier-stokes equations. Int. J. Numer. Meth. Eng. 14(12), 1785–1804 (1979)

    Article  MathSciNet  Google Scholar 

  35. Vahl Davis, G., Mallinson, G.: An evaluation of upwind and central difference approximations by a study of recirculating flow. Comput. Fluids 4(1), 29–43 (1976)

    Article  Google Scholar 

  36. Brooks, A.N., Hughes, T.J.: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations. Comput. Methods Appl. Mech. Eng. 32(1–3), 199–259 (1982)

    Article  MathSciNet  Google Scholar 

  37. Hua, J., Zhang, B., Lou, J.: Numerical simulation of microdroplet formation in coflowing immiscible liquids. AIChE J. 53(10), 2534–2548 (2007)

    Article  Google Scholar 

  38. Cram, L.: A numerical model of droplet formation. Comput. Tech. Appl. CTAC 83, 182–188 (1984)

    MathSciNet  Google Scholar 

  39. Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C., Mills, R.T., Mitchell, L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich, J., Smith, B.F., Zampini, S., Zhang, H., Zhang, H., Zhang, J.: PETSc/TAO users manual. Technical Report ANL-21/39 - Revision 3.16, Argonne National Laboratory (2021)

  40. Balay, S., Abhyankar, S., Adams, M.F., Benson, S., Brown, J., Brune, P., Buschelman, K., Constantinescu, E.M., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Hapla, V., Isaac, T., Jolivet, P., Karpeev, D., Kaushik, D., Knepley, M.G., Kong, F., Kruger, S., May, D.A., McInnes, L.C., Mills, R.T., Mitchell, L., Munson, T., Roman, J.E., Rupp, K., Sanan, P., Sarich, J., Smith, B.F., Zampini, S., Zhang, H., Zhang, H., Zhang, J.: PETSc Web page. https://petsc.org/ (2021). https://petsc.org/

Download references

Acknowledgements

This study was funded by the United States Department of Energy’s (DoE) National Nuclear Security Administration (NNSA) under the Predictive Science Academic Alliance Program III (PSAAP III) at the University at Buffalo, under contract number DE-NA0003961. This work was partially supported by the National Science Foundation under Grant No. NSF SI2-SSI: 1450339.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darsh Nathawani.

Ethics declarations

Conflict on interest

The authors declare no competing interests.

Author’s contribution

D.N. wrote the main manuscript text and prepared all figures. All authors contributed to the development of the computer code used for the research. All authors reviewed the manuscript.

Additional information

Communicated by Peter Duck.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nathawani, D., Knepley, M. A one-dimensional mathematical model for shear-induced droplet formation in co-flowing fluids. Theor. Comput. Fluid Dyn. (2024). https://doi.org/10.1007/s00162-024-00690-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00162-024-00690-5

Keywords

Navigation