Skip to main content
Log in

Flow over a hydrofoil subjected to traveling wave-based surface undulation: effect of phase difference between surface waves and wave number

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Flow around a traveling wave-based surface-undulating NACA0012 hydrofoil has been numerically studied. In particular, we determine the effect of the phase speed of the wave, the phase difference between the waves traveling on the top and bottom surfaces, and the wave number on flow dynamics around and behind the hydrofoil and propulsive performance. The flow results in a vortex sheet or a street behind the hydrofoil, where oppositely signed vortices are aligned in either forward or reverse direction. Apart from these, side vortices start forming on either side of the hydrofoil at a higher wave number. The phase difference analysis between the upper and lower surface undulation reveals the configuration better for the hydrofoil’s lateral and longitudinal stability. The hydrofoil can shift from high thrust to high lateral force configuration by changing the phase difference between waves on the top and bottom surfaces. Thrust increases with an increase in the wave number, and a threshold value of phase speed and wave number exists where the drag-to-thrust transition happens. The added mass force-based scaling analysis corroborates with the simulated results.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Triantafyllou, M.S., Techet, A.H., Hover, F.S.: Review of experimental work in biomimetic foils. IEEE J. Oceanic Eng. 29(3), 585–594 (2004). https://doi.org/10.1109/JOE.2004.833216

    Article  Google Scholar 

  2. Gazzola, M., Argentina, M., Mahadevan, L.: Scaling macroscopic aquatic locomotion. Nat. Phys. 10(10), 758–761 (2014). https://doi.org/10.1038/nphys3078

    Article  Google Scholar 

  3. Triantafyllou, M.S., Triantafyllou, G., Yue, D.: Hydrodynamics of fishlike swimming. Ann. Rev. Fluid Mech. 32(1), 33–53 (2000). https://doi.org/10.1146/annurev.fluid.32.1.33

    Article  MathSciNet  MATH  Google Scholar 

  4. Lauder, G.V., Tytell, E.D.: Hydrodynamics of undulatory propulsion. Fish physiol. 23, 425–468 (2005). https://doi.org/10.1016/S1546-5098(05)23011-X

    Article  Google Scholar 

  5. Shukla, S., Thekkethil, N., Sharma, A., Agrawal, A., Bhardwaj, R.: Hydrodynamics study on a traveling wave-based undulating surface of a hydrofoil in a free-stream flow. Phys. Rev. Fluids 7, 084703 (2022). https://doi.org/10.1103/PhysRevFluids.7.084703

    Article  Google Scholar 

  6. Sfakiotakis, M., Lane, D.M., Davies, J.B.C.: Review of fish swimming modes for aquatic locomotion. IEEE J. Oceanic Eng. 24(2), 237–252 (1999). https://doi.org/10.1109/48.757275

    Article  Google Scholar 

  7. Essapian, F.S.: Speed-induced skin folds in the bottle-nosed porpoise tursiops truncatus. Museum of Comparative Zoology (1955). https://www.biodiversitylibrary.org/part/214647

  8. Thekkethil, N., Sharma, A., Agrawal, A.: Unified hydrodynamics study for various types of fishes-like undulating rigid hydrofoil in a free stream flow. Phys. Fluids 30(7), 077107 (2018). https://doi.org/10.1063/1.5041358

    Article  Google Scholar 

  9. Khalid, M.S.U., Wang, J., Dong, H., Liu, M.: Flow transitions and mapping for undulating swimmers. Phys. Rev. Fluids 5, 063104 (2020). https://doi.org/10.1103/PhysRevFluids.5.063104

    Article  Google Scholar 

  10. Tytell, E.D.: The hydrodynamics of eel swimming II. Effect of swimming speed. J. Exp. Biol. 207(19), 3265–3279 (2004). https://doi.org/10.1242/jeb.01139

    Article  Google Scholar 

  11. Chakravarty, S., Samanta, D.: Numerical simulation of a one-dimensional flexible filament mimicking anguilliform mode of swimming using discrete vortex method. Phys. Rev. Fluids 6, 033102 (2021). https://doi.org/10.1103/PhysRevFluids.6.033102

    Article  Google Scholar 

  12. Ogunka, U., Akbarzadeh, A., Borazjani, I.: The role of amplitude on controlling flow separation using traveling wave morphing. AIAA Scitech. (2021). https://doi.org/10.2514/6.2021-2005

    Article  Google Scholar 

  13. Thompson, E., Goza, A.: Surface morphing for aerodynamic flows at low and stalled angles of attack. Phys. Rev. Fluids 7(2), 024703 (2022). https://doi.org/10.1103/PhysRevFluids.7.024703

    Article  Google Scholar 

  14. Akbarzadeh, A.M., Borazjani, I.: Controlling flow separation on a thick airfoil using backward traveling waves. AIAA J. 58(9), 3799–3807 (2020). https://doi.org/10.2514/1.J059428

    Article  Google Scholar 

  15. Tian, F.-B., Lu, X.-Y., Luo, H.: Propulsive performance of a body with a traveling-wave surface. Phys. Rev. E 86, 016304 (2012). https://doi.org/10.1103/PhysRevE.86.016304

    Article  Google Scholar 

  16. Fish, F.E., Hui, C.A.: Dolphin swimming-a review. Mammal Rev. 21(4), 181–195 (1991)

    Article  Google Scholar 

  17. Taneda, S., Tomonari, Y.: An experiment on the flow around a waving plate. J. Phys. Soc. Jpn. 36(6), 1683–1689 (1974). https://doi.org/10.1143/JPSJ.36.1683

    Article  Google Scholar 

  18. Shen, L., Zhang, X., Yue, D.K., Triantafyllou, M.S.: Turbulent flow over a flexible wall undergoing a streamwise travelling wave motion. J. Fluid Mech. 484, 197–221 (2003). https://doi.org/10.1017/S0022112003004294

    Article  MATH  Google Scholar 

  19. Akbarzadeh, A., Borazjani, I.: Reducing flow separation of an inclined plate via travelling waves. J. Fluid Mech. 880, 831–863 (2019). https://doi.org/10.1017/jfm.2019.705

    Article  MathSciNet  MATH  Google Scholar 

  20. Chao, L.-M., Mahbub Alam, M., Cheng, L.: Hydrodynamic performance of slender swimmer: effect of travelling wavelength. J. Fluid Mech. 947, 8 (2022). https://doi.org/10.1017/jfm.2022.624

    Article  MathSciNet  MATH  Google Scholar 

  21. Hu, Q.-Q., Yu, Y.-L.: The hydrodynamic effects of undulating patterns on propulsion and braking performances of long-based fin. AIP Adv. 12(3), 035319 (2022). https://doi.org/10.1063/5.0083912

    Article  Google Scholar 

  22. Alaminos-Quesada, J., Fernandez-Feria, R.: Propulsion of a foil undergoing a flapping undulatory motion from the impulse theory in the linear potential limit. J. Fluid Mech. 883, 19 (2020). https://doi.org/10.1017/jfm.2019.870

    Article  MathSciNet  MATH  Google Scholar 

  23. Manjunathan, S.A., Bhardwaj, R.: Thrust generation by pitching and heaving of an elastic plate at low Reynolds number. Phys. Fluids 32(7), 073601 (2020). https://doi.org/10.1063/5.0010873

    Article  Google Scholar 

  24. Patel, A., Bhardwaj, R.: Propulsive performance of a two-dimensional elliptic foil undergoing interlinked pitching and heaving. Phys. Fluids 34, 111904 (2022). https://doi.org/10.1063/5.0113647

    Article  Google Scholar 

  25. Gupta, S., Sharma, A., Agrawal, A., Thompson, M.C., Hourigan, K.: Hydrodynamics of a fish-like body undulation mechanism: scaling laws and regimes for vortex wake modes. Phys. Fluids 33(10), 101904 (2021). https://doi.org/10.1063/5.0062304

    Article  Google Scholar 

  26. Zhou, Z., Mittal, R.: Swimming performance and unique wake topology of the sea hare (aplysia). Phys. Rev. Fluids 3, 033102 (2018). https://doi.org/10.1103/PhysRevFluids.3.033102

    Article  Google Scholar 

  27. Sooraj, P., Sharma, A., Agrawal, A.: Dynamics of co-rotating vortices in a flow around a bio-inspired corrugated airfoil. Int. J. Heat Fluid Flow 84, 108603 (2020). https://doi.org/10.1016/j.ijheatfluidflow.2020.108603

    Article  Google Scholar 

  28. Jones, G., Santer, M., Papadakis, G.: Control of low Reynolds number flow around an airfoil using periodic surface morphing: a numerical study. J. Fluids Struct. 76, 95–115 (2018). https://doi.org/10.1016/j.jfluidstructs.2017.09.009

    Article  Google Scholar 

  29. Munday, D., Jacob, J.: Active control of separation on a wing with oscillating camber. J. Aircr. 39(1), 187–189 (2002). https://doi.org/10.2514/2.2915

    Article  Google Scholar 

  30. Chuijie, W., Yanqiong, X., Jiezhi, W.: “Fluid roller bearing’’ effect and flow control. Acta Mech. Sin. 19(5), 476–484 (2003). https://doi.org/10.1007/BF02484582

    Article  Google Scholar 

  31. Xu, F., Chen, W.-L., Bai, W.-F., Xiao, Y.-Q., Ou, J.-P.: Flow control of the wake vortex street of a circular cylinder by using a traveling wave wall at low Reynolds number. Comput. Fluids 145, 52–67 (2017). https://doi.org/10.1016/j.compfluid.2016.11.014

    Article  MathSciNet  MATH  Google Scholar 

  32. Wu, C.-J., Wang, L., Wu, J.-Z.: Suppression of the von Kármán vortex street behind a circular cylinder by a travelling wave generated by a flexible surface. J. Fluid Mech. 574, 365–391 (2007). https://doi.org/10.1017/S0022112006004150

    Article  MathSciNet  MATH  Google Scholar 

  33. Tian, F.-B., Xu, Y.-Q., Tang, X.-Y., Deng, Y.-L.: Study on a self-propelled fish swimming in viscous fluid by a finite element method. J. Mech. Med. Biol. 13(06), 1340012 (2013). https://doi.org/10.1142/S0219519413400125

    Article  Google Scholar 

  34. Müller, U., Van Den Heuvel, B., Stamhuis, E., Videler, J.: Fish foot prints: morphology and energetics of the wake behind a continuously swimming mullet (Chelon labrosus Risso). J. Exp. Biol. 200(22), 2893–2906 (1997). https://doi.org/10.1242/jeb.200.22.2893

    Article  Google Scholar 

  35. Das, A., Shukla, R.K., Govardhan, R.N.: Existence of a sharp transition in the peak propulsive efficiency of a low-Re pitching foil. J. Fluid Mech. 800, 307–326 (2016). https://doi.org/10.1017/jfm.2016.399

    Article  MathSciNet  MATH  Google Scholar 

  36. Rosenberger, L.J.: Pectoral fin locomotion in batoid fishes: undulation versus oscillation. J. Exp. Biol. 204(2), 379–394 (2001). https://doi.org/10.1242/jeb.204.2.379

    Article  Google Scholar 

  37. Thekkethil, N., Sharma, A.: Level set function-based immersed interface method and benchmark solutions for fluid flexible-structure interaction. Int. J. Numer. Methods Fluids 91(3), 134–157 (2019). https://doi.org/10.1002/fld.4746

    Article  MathSciNet  Google Scholar 

  38. Thekkethil, N., Sharma, A.: Hybrid Lagrangian–Eulerian method-based CFSD development, application, and analysis, 361–394 (2020). https://doi.org/10.1007/978-981-15-3940-4_14

  39. Eloy, C.: Optimal strouhal number for swimming animals. J. Fluids Struct. 30, 205–218 (2012)

    Article  Google Scholar 

  40. Horner, A.M., Jayne, B.C.: The effects of viscosity on the axial motor pattern and kinematics of the african lungfish (protopterus annectens) during lateral undulatory swimming. J. Exp. Biol. 211(10), 1612–1622 (2008)

    Article  Google Scholar 

  41. Blake, R., Li, J., Chan, K.: Swimming in four goldfish carassius auratus morphotypes: understanding functional design and performance employing artificially selected forms. J. Fish Biol. 75(3), 591–617 (2009)

    Article  Google Scholar 

  42. Alam, M.M., Zhou, Y., Yang, H., Guo, H., Mi, J.: The ultra-low Reynolds number airfoil wake. Exp. Fluids 48(1), 81–103 (2010). https://doi.org/10.1007/s00348-009-0713-7

    Article  Google Scholar 

  43. Gupta, S., Zhao, J., Sharma, A., Agrawal, A., Hourigan, K., Thompson, M.C.: Two-and three-dimensional wake transitions of a naca0012 airfoil. J. Fluid Mech. 954, 26 (2023)

    Article  Google Scholar 

  44. Yu, Y.-L., Huang, K.-J.: Scaling law of fish undulatory propulsion. Phys. Fluids 33(6), 061905 (2021). https://doi.org/10.1063/5.0053721

    Article  Google Scholar 

  45. Floryan, D., Van Buren, T., Rowley, C.W., Smits, A.J.: Scaling the propulsive performance of heaving and pitching foils. J. Fluid Mech. 822, 386–397 (2017). https://doi.org/10.1017/jfm.2017.302

    Article  MathSciNet  MATH  Google Scholar 

  46. Smits, A.J.: Undulatory and oscillatory swimming. J. Fluid Mech. 874, 1 (2019). https://doi.org/10.1017/jfm.2019.284

    Article  MathSciNet  MATH  Google Scholar 

  47. Moored, K.W., Quinn, D.B.: Inviscid scaling laws of a self-propelled pitching airfoil. AIAA J. 57(9), 3686–3700 (2019). https://doi.org/10.2514/1.J056634

    Article  Google Scholar 

  48. Liu, T., Wang, S., Zhang, X., He, G.: Unsteady thin-airfoil theory revisited: application of a simple lift formula. AIAA J. 53(6), 1492–1502 (2015). https://doi.org/10.2514/1.J053439

    Article  Google Scholar 

Download references

Acknowledgements

S.S. acknowledges the help of Dr. Namshad Thekkethil with in-house CFD code.

Funding

R.B. gratefully acknowledges financial support by a grant (MTR/2019/000696) from the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajneesh Bhardwaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Not applicable.

Data availability

The data that support the findings of this study are available from the authors upon reasonable request.

Author’s contribution

S.S. carried out numerical simulations, analyzed data and wrote first draft of the manuscript. A.S., A.A. and R.B. supervised S.S. and all authors reviewed the manuscript.

Additional information

Communicated by Karen Mulleners.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shukla, S., Sharma, A., Agrawal, A. et al. Flow over a hydrofoil subjected to traveling wave-based surface undulation: effect of phase difference between surface waves and wave number. Theor. Comput. Fluid Dyn. 37, 319–336 (2023). https://doi.org/10.1007/s00162-023-00646-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00646-1

Keywords

Navigation