Skip to main content

Advertisement

Log in

Passive control of dynamic stall using a flow-driven micro-cavity actuator

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

A novel passive flow control strategy for the mitigation of transient separation and dynamic stall is demonstrated by means of high-fidelity large-eddy simulations. The control technique is based on a properly-sized micro-cavity cut into a wing’s underside near the leading edge, ahead of stagnation. This cavity remains essentially inactive at low incidence. However, as the wing effective angle of attack increases, the stagnation point displaces past the micro-cavity and the accelerating flow grazing the cavity induces a high-frequency resonance phenomenon or so-called Rossiter modes. The self-generated small-scale disturbances are carried around the leading-edge through the boundary layer to the wing’s upper side where the laminar separation bubble (LSB) amplifies these disturbances. This process delays LSB bursting and dynamic stall when the cavity size is selected such that its naturally occurring Rossiter modes are tuned to the receptivity of the LSB. Control effectiveness is explored for a harmonically pitching NACA 0012 wing section with freestream Mach number \(M_\infty = 0.2\), chord Reynolds numbers \(\textrm{Re}_\textrm{c} = 5 \times 10^5\), and maximum angle of attack of \(18^\circ \). The flow fields are computed employing a validated overset high-order implicit large-eddy simulation (LES) solver based on sixth-order compact schemes for the spatial derivatives augmented with an eighth-order low-pass filter. Despite its simplicity, the micro-cavity resonance is found to be highly effective in preventing the deep dynamic stall experienced by the baseline airfoil. A significant reduction in the cycle-averaged drag and in the force and moment fluctuations is achieved. In addition, the negative (unstable) net-cycle pitch damping found in the baseline cases is eliminated.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

c :

Airfoil chord

\(C_\textrm{L}, C_\textrm{D}, C_\textrm{M}\) :

Lift, drag and quarter-chord moment coefficients

\(C_\textrm{p}\) :

Pressure coefficient

D :

Micro-cavity depth

DSV:

Dynamic stall vortex

k :

Reduced frequency, \(\pi f c / U_\infty \)

L :

Micro-cavity length

LSB:

Laminar separation bubble

m :

Micro-cavity resonance modes

M :

Mach number

\(\textrm{Re}_\textrm{c}\) :

Reynolds number based on chord, \(\rho _{\infty } U_{\infty } c / \mu _{\infty }\)

s :

Span width for spanwise-periodic computations

SLV:

Shear-layer vortex

St :

Non-dimensional frequency, \(fc/U_\infty \)

t :

Time

uvw :

Cartesian velocity components

\(U_\infty \) :

Freestream velocity

xyz :

Cartesian coordinates

\(\alpha \) :

Angle of attack

\(\Delta t\) :

Time step size

\(\mu \) :

Molecular viscosity coefficient

\(\xi ,\eta ,\zeta \) :

Body-fitted computational coordinates

\(\zeta _\textrm{d}\) :

Net-cycle pitch damping

\(\rho \) :

Fluid density

\(\omega _x, \omega _y, \omega _z\) :

Vorticity components

References

  1. McCroskey, W.J.: Unsteady airfoils. Annu. Rev. Fluid Mech. 14(1), 285–311 (1982). https://doi.org/10.1146/annurev.fl.14.010182.001441

    Article  MATH  Google Scholar 

  2. Carr, L.: Progress in analysis and prediction of dynamic stall. J. Aircr. 25(1), 6–17 (1988). https://doi.org/10.2514/3.45534

    Article  MathSciNet  Google Scholar 

  3. Ericsson, L.E., Reding, J.P.: Fluid dynamics of unsteady separated flow. Part II. Lifting surfaces. Prog. Aerosp. Sci. 24(4), 249–356 (1987). https://doi.org/10.1016/0376-0421(87)90001-7

    Article  Google Scholar 

  4. Visbal, M.R.: On some physical aspects of airfoil dynamic stall. In: Miller, J., Telionis, D. (eds.) Proceedings of the International Symposium on Non-Unsteady Fluid Dynamics, vol. 92, pp. 127–147. ASME (1990)

  5. Ekaterinaris, J., Platzer, M.: Computational prediction of airfoil dynamic stall. Prog. Aerosp. Sci. 33(11), 759–846 (1998). https://doi.org/10.1016/S0376-0421(97)00012-2

    Article  Google Scholar 

  6. Carr, L.W., Chandrasekhara, M.S.: Compressibility effects on dynamic stall. Prog. Aerosp. Sci. 32(6), 523–573 (1996). https://doi.org/10.1016/0376-0421(95)00009-7

    Article  Google Scholar 

  7. Carr, L., McAlister, K.: The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil. AIAA Paper 1983-2533 (1983)

  8. Chandrasekhara, M., Wilder, M., Carr, L.: Unsteady stall control using dynamically deforming airfoils. AIAA J. 36(10), 1792–1800 (1998)

    Article  Google Scholar 

  9. Heine, B., Mulleners, K., Joubert, G., Raffel, M.: Dynamic stall control by passive disturbance generators. AIAA Paper 2011-3371 (2011)

  10. Greenblatt, D., Wygnanski, I.: Dynamic stall control by periodic excitation, part 1: Naca 0015 parametric study. J. Aircr. 38(3), 430–438 (2001)

    Article  Google Scholar 

  11. Muller-Vahl, H., Strangfeld, C., Nayeri, C, Paschereit, C., Greenblatt, D.: Thick airfoil deep dynamic stall and its control. AIAA Paper 2013-0854 (2013)

  12. Woo, G., Glezer, A.: Transient control of separating flow over a dynamically-pitching airfoil. AIAA Paper 2010-0861 (2010)

  13. Post, M., Corke, T.: Separation control using plasma actuators- dynamic stall control of an oscillating airfoil. AIAA Paper 2004-2517 (2004)

  14. Lombardi, A., Bowles, P., Corke, T.: Closed-loop dynamic stall control using a plasma actuator. AIAA Paper 2012-0918 (2012)

  15. Visbal, M.R.: Analysis of the onset of dynamic stall using high-fidelity large-eddy simulations. AIAA Paper 2014-0591 (2014a). https://doi.org/10.2514/6.2014-0591

  16. Visbal, M.R., Garmann, D.J.: Analysis of dynamic stall on a pitching airfoil using high-fidelity large-eddy simulations. AIAA J. 56(1), 46–63 (2018). https://doi.org/10.2514/1.J056108

    Article  Google Scholar 

  17. Chandrasekhara, M.S., Carr, L.W., Wilder, M.C.: Interferometric investigations of compressible dynamic stall over a transiently pitching airfoil. AIAA Paper 93-0211 (1993). https://doi.org/10.2514/3.12025

  18. Benton, S.I., Visbal, M.R.: The onset of dynamic stall at a high, transitional Reynolds number. J. Fluid Mech. 861, 860–885 (2019). https://doi.org/10.1017/jfm.2018.939

    Article  MathSciNet  MATH  Google Scholar 

  19. Visbal, M.R.: Numerical exploration of flow control for delay of dynamic stall on a pitching airfoil. AIAA Paper 2014-2044 (2014b). https://doi.org/10.2514/6.2014-2044

  20. Visbal, M.R., Benton, S.I.: Exploration of high-frequency control of dynamic stall using large-eddy simulations. AIAA J. 56(8), 2974–2991 (2018). https://doi.org/10.2514/1.J056720

    Article  Google Scholar 

  21. Benton, S.I., Visbal, M.R.: High-frequency forcing to delay dynamic stall at relevant Reynolds number. AIAA Paper 2017-4119 (2017). https://doi.org/10.2514/6.2017-4119

  22. Visbal, M.R., Garmann, D.J.: Mitigation of dynamic stall over a pitching finite wing using high-frequency actuation. AIAA J. 58(1), 1–10 (2020). https://doi.org/10.2514/1.J058731

    Article  Google Scholar 

  23. Garmann, D.J., Visbal, M.R.: Control of dynamic tip stall on swept wings. AIAA Paper 2021-1450 (2021)

  24. Visbal, M.R., Garmann, D.J.: Micro-cavity actuator for delay of dynamic stall. U.S. Patent submitted, Application No. 17495884 (2021)

  25. Rossiter, J.E.: Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds. Aeronautical Research Council Reports and Memoranda No. 3438 (1964)

  26. Heller, H.H., Bliss, D.: The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression. AIAA Paper 75-491 (1975)

  27. Williams, D., Rowley, C.: Recent progress in closed-loop control of cavity tones. AIAA Paper 2006-0712 (2006)

  28. Visbal, M.R., Rizzetta, D.P.: Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes. J. Fluids Eng. 124, 836–847 (2002)

    Article  Google Scholar 

  29. Visbal, M.R., Morgan, P.E., Rizzetta, D.P.: An implicit LES approach based on high-order compact differencing and filtering schemes. AIAA Paper 2003-4098 (2003)

  30. Vinokur, M.: Conservation equations of gasdynamics in curvilinear coordinate systems. J. Comput. Phys. 14, 105–125 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  31. Steger, J.L.: Implicit finite-difference simulation of flow about arbitrary two-dimensional geometries. AIAA J. 16(7), 679–686 (1978)

    Article  MATH  Google Scholar 

  32. Anderson, D.A., Tannehill, J.C., Pletcher, R.H.: Computational Fluid Mechanics and Heat Transfer. McGraw-Hill Book Company, New York (1984)

    MATH  Google Scholar 

  33. Stolz, S., Adams, N.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11(7), 1699–1701 (1999)

    Article  MATH  Google Scholar 

  34. Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R.: An explicit filtering method for LES of compressible flows. Phys. Fluids 15(8), 2279–2289 (2003)

    Article  MATH  Google Scholar 

  35. Visbal, M.R., Gaitonde, D.V.: High-order accurate methods for complex unsteady subsonic flows. AIAA J. 37(10), 1231–1239 (1999)

    Article  Google Scholar 

  36. Gaitonde, D.V., Visbal, M.R.: High-order schemes for Navier–Stokes equations: algorithm and implementation into FDL3DI. Technical Report AFRL-VA-WP-TR-1998-3060, Air Force Research Laboratory, Wright-Patterson AFB (1998)

  37. Lele, S.K.: Compact finite difference schemes with spectral-like resolution. J. Comput. Phys. 103, 16–42 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  38. Visbal, M.R., Gaitonde, D.V.: On the use of high-order finite-difference schemes on curvilinear and deforming meshes. J. Comput. Phys. 181, 155–185 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  39. Gaitonde, D.V., Shang, J.S., Young, J.L.: Practical aspects of higher-order numerical schemes for wave propagation phenomena. Int. J. Numer. Methods Eng. 45, 1849–1869 (1999)

    Article  MATH  Google Scholar 

  40. Alpert, P.: Implicit filtering in conjunction with explicit filtering. J. Comput. Phys. 44, 212–219 (1981)

    Article  MATH  Google Scholar 

  41. Gaitonde, D.V., Visbal, M.R.: Further development of a Navier–Stokes solution procedure based on higher-order formulas. AIAA Paper 99-0557 (1999)

  42. Visbal, M., Gaitonde, D.: Very high-order spatially implicit schemes for computational acoustics on curvilinear meshes. J. Comput. Acoust. 9(4), 1259–1286 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Visbal, M.R.: Control of dynamic stall on a pitching airfoil using high-frequency actuation. AIAA Paper 2015-1267 (2015). https://doi.org/10.2514/6.2015-1267

Download references

Funding

This work was supported in part by AFOSR under task LRIR 20RQCOR053 monitored by Dr. G. Abate and by a grant of HPC time from the DoD HPC Shared Resource Centers at AFRL and ERDC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel R. Visbal.

Ethics declarations

Availability of data and materials

The data sets generated during the current study are available from the authors upon reasonable request.

Conflict of interest

The authors declare no competing financial interests.

Ethical approval

Not applicable.

Author contribution

Both authors contributed equally to this project.

Additional information

Communicated by Vassilis Theofilis.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Visbal, M.R., Garmann, D.J. Passive control of dynamic stall using a flow-driven micro-cavity actuator. Theor. Comput. Fluid Dyn. 37, 289–303 (2023). https://doi.org/10.1007/s00162-023-00645-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00645-2

Keywords

Navigation