Skip to main content

Advertisement

Log in

Vortex-induced vibration and flutter of a filament behind a circular cylinder

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Flow past a flexible filament, a two-dimensional splitter plate with negligible thickness, attached behind a circular cylinder is investigated. The Reynolds number based on the free-stream speed of incoming flow and diameter of the cylinder is \(\textrm{Re}=100\). At this \(\textrm{Re}\), the flow for a rigid filament is steady. However, a flexible filament undergoes flow-induced vibration for a range of reduced speed, \(U^*\), defined as inverse of the first nondimensionalized natural frequency of the filament. Over the wide range of \(U^*\) considered in this work (\(U^*\le 240\)), it exhibits both flutter and vortex-induced vibration (VIV). Lock-in with various normal modes related to bending of the filament, each in a different regime of reduced speed, is observed during VIV. Interestingly, the fluid–structure system does not lock-in with the first normal mode of bending but with higher modes. The flow is steady for an extended range of reduced speed both before and after the lock-in with second mode. Two patterns of vortex shedding are observed. The \(\textsf{2P}\) mode is associated with high-frequency vibration, while the \(\mathsf {2\,S}\) mode is observed during relatively low-frequency oscillation. A symmetry-breaking pitchfork bifurcation leads to static deflection of the filament during the first steady regime. The filament exhibits flutter response, at large reduced speed, with relatively low amplitude and frequency. No vortex shedding is observed during flutter. The fluid forces that cause flutter arise from asymmetry across the two sides of the filament in the zones of recirculation downstream of the cylinder. Comparison of the space-time patterns of energy transfer at the fluid–filament interface for flutter and vortex-induced vibration reveals that the energy transfer is much smaller during flutter compared to VIV. The point of maximum energy transfer is located close to the root of the filament in case of flutter, while it is near the tip during VIV.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Anderson, E.A., Szewczyk, A.A.: Effects of a splitter plate on the near wake of a circular cylinder in 2 and 3-dimensional flow configurations. Exp. Fluids 23(2), 161–174 (1997)

    Article  Google Scholar 

  2. Apelt, C.J., West, G.S.: The effects of wake splitter plates on bluff-body flow in the range \(10^4 < R < 5\times 10^4\). Part 2. J. Fluid Mech. 71(1), 145–160 (1975)

    Article  Google Scholar 

  3. Apelt, C.J., West, G.S., Szewczyk, A.A.: The effects of wake splitter plates on the flow past a circular cylinder in the range \(10^4 < R < 5\times 10^4\). J. Fluid Mech. 61(1), 187–198 (1973)

    Article  Google Scholar 

  4. Argentina, M., Mahadevan, L.: Fluid-flow-induced flutter of a flag. Proc. Natl. Acad. Sci. 102(6), 1829–1834 (2005)

    Article  Google Scholar 

  5. Bathe, K.J.: Conserving energy and momentum in nonlinear dynamics: a simple implicit time integration scheme. Comput. Struct. 85, 437–445 (2007)

    Article  MathSciNet  Google Scholar 

  6. Bazilevs, Y., Calo, V.M., Hughes, T.J.R., et al.: Isogeometric fluid–structure interaction: theory, algorithms, and computations. Comput. Mech. 43, 3–37 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bearman, P.W.: Circular cylinder wakes and vortex-induced vibrations. J. Fluids Struct. 27(5), 648–658 (2011)

    Article  Google Scholar 

  8. Berger, E., Wille, R.: Periodic flow phenomena. Ann. Rev. Fluid Mech. 4, 313–340 (1972)

    Article  Google Scholar 

  9. Blevins, R.D.: Flow-Induced Vibration. Van Nostrand Reinhold, New York (1977)

    MATH  Google Scholar 

  10. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. Chung, J., Hulbert, G.M.: A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-\(\alpha \) method. J. Appl. Mech. 60(2), 371–375 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Connell, B.S.H., Yue, D.K.P.: Flapping dynamics of a flag in a uniform stream. J. Fluid Mech. 581, 33–67 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cossu, C., Morino, L.: On the instability of a spring-mounted circular cylinder in a viscous flow at low Reynolds numbers. J. Fluids Struct. 14(2), 183–196 (2000)

    Article  Google Scholar 

  14. Eloy, C., Lagrange, R., Souilliez, C., et al.: Aeroelastic instability of cantilevered flexible plates in uniform flow. J. Fluid Mech. 611, 97–106 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Franca, L.P., Frey, S.L., Hughes, T.J.R.: Stabilized finite element methods: I. Application to the advective–diffusive model. Comput. Methods Appl. Mech. Eng. 95(2), 253–276 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  16. Furquan, M., Mittal, S.: Flow past two square cylinders with flexible splitter plates. Comput. Mech. 55, 1155–1166 (2015)

    Article  MATH  Google Scholar 

  17. Furquan, M., Mittal, S.: Flow-induced vibration of filaments attached to two side-by-side cylinders. Phys. Fluids 6, 66 (2021)

    Google Scholar 

  18. Furquan, M., Mittal, S.: Multiple lock-ins in vortex-induced vibration of a filament. J. Fluid Mech. 916, R1 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gomes, J.P., Yigit, S., Lienhart, H., et al.: Experimental and numerical study on a laminar fluid–structure interaction reference test case. J. Fluids Struct. 27(1), 43–61 (2011)

    Article  Google Scholar 

  20. Govardhan, R., Williamson, C.H.K.: Resonance forever: existence of a critical mass and an infinite regime of resonance in vortex-induced vibration. J. Fluid Mech. 473, 147–166 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gurugubelli, P.S., Jaiman, R.K.: Self-induced flapping dynamics of a flexible inverted foil in a uniform flow. J. Fluid Mech. 781, 657–694 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  22. Hughes, T.J.R.: The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Dover, Mineola (2012)

    Google Scholar 

  23. Hwang, J.Y., Yang, K.S., Sun, S.H.: Reduction of flow-induced forces on a circular cylinder using a detached splitter plate. Phys. Fluids 15(8), 2433–2436 (2003)

    Article  MATH  Google Scholar 

  24. Kalmbach, A., Breuer, M.: Experimental PIV/V3V measurements of vortex-induced fluid–structure interaction in turbulent flow—a new benchmark FSI-PfS-2a. J. Fluids Struct. 42, 369–387 (2013)

    Article  Google Scholar 

  25. Kumar, B., Mittal, S.: Effect of blockage on critical parameters for flow past a circular cylinder. Int. J. Numer. Methods Fluids 50(8), 987–1001 (2006)

    Article  MATH  Google Scholar 

  26. Kumar, B., Mittal, S.: Prediction of the critical Reynolds number for flow past a circular cylinder. Comput. Methods Appl. Mech. Eng. 195(44), 6046–6058 (2006)

    Article  MATH  Google Scholar 

  27. Kwon, K., Choi, H.: Control of laminar vortex shedding behind a circular cylinder using splitter plates. Phys. Fluids 8, 479–486 (1996)

    Article  MATH  Google Scholar 

  28. Lacis, U., Brosse, N., Ingremeau, F., et al.: Passive appendages generate drift through symmetry breaking. Nat. Commun. 5, 5310 (2014)

    Article  Google Scholar 

  29. Mittal, S., Singh, S.: Vortex-induced vibrations at subcritical Re. J. Fluid Mech. 534, 185–194 (2005)

    Article  MATH  Google Scholar 

  30. Nakamura, T., Kaneko, S., Inada, F., et al.: Flow-Induced Vibrations: Classifications and Lessons from Practical Experiences. Butterworth-Heinemann, Oxford (2013)

    Google Scholar 

  31. Navrose, Mittal S.: Lock-in in vortex-induced vibration. J. Fluid Mech. 794, 565–594 (2016)

    Article  MathSciNet  Google Scholar 

  32. Navrose, Mittal S.: A new regime of multiple states in free vibration of a cylinder at low re. J. Fluids Struct. 68, 310–321 (2017)

    Article  Google Scholar 

  33. Paidoussis, M.P., Price, S.J., De Langre, E.: Fluid–Structure Interactions: Cross-flow-induced Instabilities. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  34. Pfister, J.L., Marquet, O.: Fluid–structure stability analyses and nonlinear dynamics of flexible splitter plates interacting with a circular cylinder flow. J. Fluid Mech. 896, A24 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  35. Roshko, A.: On the drag and shedding frequency of two-dimensional bluff bodies. Tech. rep., National Advisory Committee for Aeronautics, Washington, DC, USA (1954)

  36. Roshko, A.: On the wake and drag of bluff bodies. J. Aeronaut. Sci. 22(2), 124–132 (1955)

    Article  MATH  Google Scholar 

  37. Sahu, T.R., Furquan, M., Jaiswal, Y., et al.: Flow-induced vibration of a circular cylinder with rigid splitter plate. J. Fluids Struct. 89, 244–256 (2019)

    Article  Google Scholar 

  38. Sahu, T.R., Furquan, M., Mittal, S.: Numerical study of flow-induced vibration of a circular cylinder with attached flexible splitter plate at low Re. J. Fluid Mech. 880, 551–593 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sarpkaya, T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluids Struct. 19(4), 389–447 (2004)

    Article  Google Scholar 

  40. Shukla, S., Govardhan, R.N., Arakeri, J.H.: Flow over a cylinder with a hinged-splitter plate. J. Fluids Struct. 25(4), 713–720 (2009)

    Article  Google Scholar 

  41. Shukla, S., Govardhan, R.N., Arakeri, J.H.: Dynamics of a flexible splitter plate in the wake of a circular cylinder. J. Fluids Struct. 41, 127–134 (2013)

    Article  Google Scholar 

  42. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: part I. J. Appl. Mech. 53, 849–854 (1986)

    Article  MATH  Google Scholar 

  43. Simo, J.C., Vu-Quoc, L.: On the dynamics of flexible beams under large overall motions—the plane case: part II. J. Appl. Mech. 53, 855–863 (1986)

    Article  MATH  Google Scholar 

  44. Singh, S.P., Mittal, S.: Vortex-induced oscillations at low Reynolds numbers: hysteresis and vortex-shedding modes. J. Fluids Struct. 20(8), 1085–1104 (2005)

    Article  Google Scholar 

  45. Tezduyar, T.E.: Computation of moving boundaries and interfaces and stabilization parameters. Int. J. Numer. Methods Fluids 43(5), 555–575 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  46. Tezduyar, T.E., Sathe, S.: Modelling of fluid–structure interactions with the space-time finite elements: solution techniques. Int. J. Numer. Methods Fluids 54, 855–900 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  47. Tezduyar, T.E., Behr, M., Liou, J.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: I. The concept and the preliminary numerical tests. Comput. Methods Appl. Mech. Eng. 94(3), 339–351 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  48. Tezduyar, T.E., Behr, M., Mittal, S., et al.: Computation of unsteady incompressible flows with stabilized finite element methods: space-time formulations, iterative strategies and massively parallel implementations. New Methods Transient Anal. AMD, ASME 143, 7–24 (1992)

    Google Scholar 

  49. Tezduyar, T.E., Behr, M., Mittal, S., et al.: A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders. Comput. Methods Appl. Mech. Eng. 94(3), 353–371 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  50. Tezduyar, T.E., Mittal, S., Ray, S.E., et al.: Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements. Comput. Methods Appl. Mech. Eng. 9(2), 221–242 (1992)

    Article  MATH  Google Scholar 

  51. Turek, S., Hron, J.: Proposal for numerical benchmarking of fluid–structure interaction between an elastic object and laminar incompressible flow. In: Bungartz, H.J., Schäfer, M. (eds.) Fluid–Structure Interaction: Modelling, Simulation, Optimisation. Springer, Berlin (2006)

    MATH  Google Scholar 

  52. Wall, W.A., Ramm, E.: Fluid–structure interaction based upon a stabilized (ALE) finite element method. In: Idelsohn, S., Onate, E. (Eds.) 4th World Congress on Computational Mechanics, CIMNE, Barcelona, Spain, Computational Mechanics: New trends and Applications. Buenos Aires, Argentina (1998)

  53. Williamson, C.H.K., Govardhan, R.: Vortex-induced vibrations. Annu. Rev. Fluid Mech. 36, 423–455 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  54. Williamson, C.H.K., Roshko, A.: Vortex formation in the wake of an oscillating cylinder. J. Fluids Struct. 2, 355–381 (1988)

    Article  Google Scholar 

  55. Wriggers, P.: Nonlinear Finite Element Methods. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  56. Yu, Y., Liu, Y., Amandolese, X.: A review on fluid-induced flag vibrations. Appl. Mech. Rev. 71, 010801 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

All computations presented in the manuscript were performed on HPC facility at IIT Kanpur, set up under the aegis of Department of Science and Technology (DST), Government of India. MF would also like to acknowledge the support from DST in the form of inspire faculty fellowship.

Author information

Authors and Affiliations

Authors

Contributions

M.F. and S.M. conceptualized and formulated the problem. M.F. formulated and implemented the structural solver and carried out the computations and initial analysis. M.F. and S.M. analysed the results. M.F. wrote the manuscript, and S.M. reviewed it.

Corresponding author

Correspondence to Sanjay Mittal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Communicated by Ashok Gopalarathnam.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Furquan, M., Mittal, S. Vortex-induced vibration and flutter of a filament behind a circular cylinder. Theor. Comput. Fluid Dyn. 37, 305–318 (2023). https://doi.org/10.1007/s00162-023-00644-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-023-00644-3

Keywords

Navigation