Skip to main content
Log in

Systolic anterior motion in hypertrophic cardiomyopathy: a fluid–structure interaction computational model

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present direct numerical simulations for the pathophysiology of hypertrophic cardiomyopathy of the left ventricle of the human heart. This cardiovascular disorder manifests itself through systolic anterior motion (SAM), a drift of the mitral leaflets towards the aortic subvalvular region, sometimes causing ventricular obstruction during systole. This pathology is induced by a combination of factors, including a thickening of the interventricular septum and an elongation of the mitral valve leaflets: we perform a full parametric study to assess their effect on the disease. From our results we observe that SAM occurs when elongated leaflets, hypertrophic ventricles and strong ejection fraction are present at the same time. In contrast, a physiological ventricle with elongated leaflets, an hypertrophic ventricle with physiological leaflets or diseased ventricle and leaflets with a weak ejection fraction do not produce SAM. After verifying that the numerical results are consistent and in agreement with the clinical data from the literature, we virtually test the two standard surgical procedures, leaflet plication and septal myectomy, adopted for the surgical treatment of SAM. For all the considered cases we obtain quantitative confirmation for the reliability of the intraventricular subvalvular pressure drop (or subvalvular pressure gradient for the medical community) as diagnostic indicator of the systolic anterior motion: when this quantity attains the value of 30 mmHg, SAM of the mitral leaflets is observed, while when this threshold is exceeded the SAM becomes obstructive. On the other hand, in all cases for which SAM is not observed the above pressure drop is always below the threshold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Boyang, S., et al.: Cardiac MRI based numerical modeling of left ventricular fluid dynamics with mitral valve incorporated. J. Biomech. 26, 225–230 (2016)

    Google Scholar 

  2. de Tullio, M.D., Pascazio, G.: A moving least-squares immersed boundary method for simulating the fluid–structure interaction of elastic bodies with arbitrary thickness. J. Comput. Phys. 235, 201–225 (2016)

    Article  MathSciNet  Google Scholar 

  3. Donato, M.D., et al.: Left ventricular geometry in normal and post-anterior myocardial infarction patients: sphericity index and ‘new’ conicity index comparisons. Eur. J. Cardiothorac. Surg. 29, 225–230 (2006)

    Article  Google Scholar 

  4. Fadlun, E.A., Verzicco, R., Orlandi, P., Mohd-Yosuf, J.: Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations. J. Comput. Phys. 161, 35–60 (2000)

    Article  MathSciNet  Google Scholar 

  5. Feins, E.N., Yamauchi, H., Marx, G.R., Freudenthal, F.P., Liu, H., del Nido, P.J., Vasilyev, N.V.: Repair of posterior mitral valve prolapse with a novel leaflet plication clip in an animal model. J. Thorac. Cardiovasc. Surg. 147(2), 783–791 (2014)

    Article  Google Scholar 

  6. Gregor, P., Curila, K.: Medical treatment of hypertrophic cardiomyopathy—What do we know about it today? Cor et Vasa 57, e219–e224 (2015)

    Article  Google Scholar 

  7. Koester, M.: A review of sudden cardiac death in young athletes and strategies for preparticipation cardiovascular screening. J. Athlet. Train. 36(2), 197–204 (2001)

    Google Scholar 

  8. Maron, B.J., Gardin, J.M., Flack, J..M..e.a: Assessment of the prevalence of hypertrophic cardiomyopathy in a general population of young adults: echocardiographic analysis of 4111 subjects in the cardia study. Circulation 92, 785–944 (1995)

    Article  Google Scholar 

  9. Maron, B.J., Ommen, S.R., Semsarian, C., Spirito, P., Olivotto, I., Maron, M.S.: Hypertrophic cardiomyopathy. Present and future, with translation into contemporary cardiovascular medicine. J. Am. Coll. Cardiol. 64, 83–99 (2014)

    Article  Google Scholar 

  10. Meschini, V., de Tullio, M.D., Querzoli, G., Verzicco, R.: Flow structure in healthy and pathological left ventricles with natural and prosthetic mitral valves. J. Fluid Mech. 834, 271–307 (2018)

    Article  MathSciNet  Google Scholar 

  11. Meschini, V., de Tullio, M.D., Verzicco, R.: Effects of chordae tendineae on the flow in the left heart ventricle. Eur. Phys. J. E 41(2), 27 (2018)

    Article  Google Scholar 

  12. Mittal, R., Seo, J.H., Vedula, V., Choi, Y.J., Liu, H., Huang, H.H., Jain, S., Younes, L., Abrahamd, T., George, R.T.: Computational modeling of cardiac hemodynamics: current status and future outlook. J. Comput. Phys. 305, 1065–1082 (2016)

    Article  MathSciNet  Google Scholar 

  13. Naidu, S.S.: Hypertrophic Cardiomyopathy. Springer, New York (2015)

    Book  Google Scholar 

  14. Seo, J.H., et al.: Effect of the mitral valve on diastolic flow patterns. Phys. Fluids 26, 121901 (2016)

    Article  Google Scholar 

  15. Sherrid, M., Balaram, S., Kim, B., Axel, L., Swistel, D.: The mitral valve in obstructive hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 67(15), 1846–1858 (2016)

    Article  Google Scholar 

  16. Siginer, D.A., De Kee, D., Chhabra, R.P.: Advances in the Flow and Rheology of Non-Newtonian Fluids. Elsevier, Amsterdam (1999)

    Google Scholar 

  17. Spandan, V., Meschini, V., de Tullio, M.D., Querzoli, G., Lohse, D., Verzicco, R.: A parallel interaction potential approach for large scale simulations of deformable interfaces and membranes. J. Comput. Phys. 348, 567–590 (2017)

    Article  MathSciNet  Google Scholar 

  18. Stouffer, G., Runge, M., Patterson, C., Rossi, J.: Netter’s Cardiology. Theoretical Background and Biological/Biomedical Problems. Elsevier, New York (2018)

    Google Scholar 

  19. Suinesiaputra, A., et al.: Statistical shape modeling of the left ventricle: myocardial infarct classification challenge. J. Biomed. Health Inform. 22, 503–515 (2016)

    Article  Google Scholar 

  20. Tanaka, M., Wada, S., Nakamura, M.: Computational Biomechanics, Theoretical Background and Biological/Biomedical Problems, vol. 3. Springer, New York (2012)

    Book  Google Scholar 

  21. University, S.: https://web.stanford.edu

  22. Van Gelder, A.: Approximate simulation of elastic membranes by triangulated spring meshes. J. Graph. Tools 3, 21–41 (1998)

    Article  Google Scholar 

  23. Vanella, M., Balaras, E.: A moving-least-squares reconstruction for embedded-boundary formulations. J. Comput. Phys. 228(18), 6617–6628 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Meschini.

Additional information

Communicated by Jeff D. Eldredge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meschini, V., Mittal, R. & Verzicco, R. Systolic anterior motion in hypertrophic cardiomyopathy: a fluid–structure interaction computational model. Theor. Comput. Fluid Dyn. 35, 381–396 (2021). https://doi.org/10.1007/s00162-021-00564-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-021-00564-0

Keywords

Navigation