Skip to main content
Log in

Exact instantaneous optimals in the non-geostrophic Eady problem and the detrimental effects of discretization

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We derive exact analytical expressions for flow configurations that optimize the instantaneous growth rate of energy in the linear Eady problem, along with the associated growth rates. These optimal perturbations are relevant linear stability analysis, but, more importantly, they are relevant for understanding the energetics of fully nonlinear baroclinic turbulence. The optimal perturbations and their growth rates are independent of the Richardson number. The growth rates of the optimal perturbations grow linearly as the horizontal wavelength of the perturbation decreases. Perturbation energy growth at large scales is driven by extraction of potential energy from the mean flow, while at small scales it is driven by extraction of kinetic energy from the mean shear. We also analyze the effect of spatial discretization on the optimal perturbations and their growth rates. A second-order energy-conserving discretization on the Arakawa B grid generally has too weak growth rates at small scales and is less accurate than two second-order discretizations on the Arakawa C grid. The two C-grid discretizations, one that conserves energy and another that conserves both energy and enstrophy, yield very similar optimal perturbation growth rates that are significantly more accurate than the B-grid discretization at small scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arakawa, A., Lamb, V.R.: Computational design of the basic dynamical processes of the UCLA general circulation model. Methods Comput. Phys. 17, 173–265 (1977)

    Google Scholar 

  2. Arakawa, A., Lamb, V.R.: A potential enstrophy and energy conserving scheme for the shallow water equations. Mon. Weather Rev. 109(1), 18–36 (1981)

    Article  Google Scholar 

  3. Arakawa, A., Moorthi, S.: Baroclinic instability in vertically discrete systems. J. Atmos. Sci. 45(11), 1688–1708 (1988)

    Article  Google Scholar 

  4. Barham, W., Bachman, S., Grooms, I.: Some effects of horizontal discretization on linear baroclinic and symmetric instabilities. Ocean Model. 125, 106–116 (2018)

    Article  Google Scholar 

  5. Bell, M.J., White, A.A.: Spurious stability and instability in n-level quasi-geostrophic models. J. Atmos. Sci. 45(11), 1731–1738 (1988)

    Article  Google Scholar 

  6. Bell, M.J., White, A.A.: Analytical approximations to spurious short-wave baroclinic instabilities in ocean models. Ocean Model. 118, 31–40 (2017)

    Article  Google Scholar 

  7. Böberg, L., Brösa, U.: Onset of turbulence in a pipe. Z. Naturforsch. 43(8–9), 697–726 (1988)

    Article  Google Scholar 

  8. Bryan, K.: A numerical method for the study of the circulation of the world ocean. J. Comput. Phys. 4(3), 347–376 (1969)

    Article  MATH  Google Scholar 

  9. Capet, X., Roullet, G., Klein, P., Maze, G.: Intensification of upper-ocean submesoscale turbulence through Charney baroclinic instability. J. Phys. Ocean. 46(11), 3365–3384 (2016)

    Article  Google Scholar 

  10. DelSole, T.: The necessity of instantaneous optimals in stationary turbulence. J. Atmos. Sci. 61(9), 1086–1091 (2004)

    Article  MathSciNet  Google Scholar 

  11. Ducousso, N., Le Sommer, J., Molines, J.M., Bell, M.: Impact of the symmetric instability of the computational kind at mesoscale-and submesoscale-permitting resolutions. Ocean Model. 120, 18–26 (2017)

    Article  Google Scholar 

  12. Eady, E.T.: Long waves and cyclone waves. Tellus 1(3), 33–52 (1949)

    Article  MathSciNet  Google Scholar 

  13. Farrell, B.: Modal and non-modal baroclinic waves. J. Atmos. Sci. 41(4), 668–673 (1984)

    Article  Google Scholar 

  14. Farrell, B.: Transient growth of damped baroclinic waves. J. Atmos. Sci. 42(24), 2718–2727 (1985)

    Article  Google Scholar 

  15. Farrell, B.F.: Optimal excitation of baroclinic waves. J. Atmos. Sci. 46(9), 1193–1206 (1989)

    Article  Google Scholar 

  16. Farrell, B.F., Ioannou, P.J.: Generalized stability theory. Part I: autonomous operators. J. Atmos. Sci. 53(14), 2025–2040 (1996)

    Article  Google Scholar 

  17. Ferrari, R., Wunsch, C.: Ocean circulation kinetic energy: reservoirs, sources, and sinks. Ann. Rev. Fluid Mech. 41, 253–282 (2009)

    Article  MATH  Google Scholar 

  18. Griffies, S.M.: Fundamentals of Ocean Climate Models. Princeton University Press, Princeton (2004)

    MATH  Google Scholar 

  19. Grooms, I.: Submesoscale baroclinic instability in the balance equations. J. Fluid Mech. 762, 256–272 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. Haidvogel, D.B., Beckmann, A.: Numerical Ocean Circulation Modeling, vol. 2. World Scientific, Singapore (1999)

    MATH  Google Scholar 

  21. Hollingsworth, A., Kållberg, P., Renner, V., Burridge, D.M.: An internal symmetric computational instability. Q. J. R. Meteorol. Soc. 109(460), 417–428 (1983)

    Article  Google Scholar 

  22. Kalashnik, M.V., Chkhetiani, O.: An analytical approach to the determination of optimal perturbations in the Eady model. J. Atmos. Sci. 75, 2741–2761 (2018)

    Article  Google Scholar 

  23. Le Sommer, J., Penduff, T., Theetten, S., Madec, G., Barnier, B.: How momentum advection schemes influence current-topography interactions at eddy permitting resolution. Ocean Model. 29(1), 1–14 (2009)

    Article  Google Scholar 

  24. Madec, G.: NEMO ocean engine. Note du Pôle de modélisation, Institut Pierre-Simon Laplace (IPSL), France, No 27, ISSN No 1288–1619 (2008)

  25. Marshall, J., Adcroft, A., Hill, C., Perelman, L., Heisey, C.: A finite-volume, incompressible Navier–Stokes model for studies of the ocean on parallel computers. J. Geophys. Res. Oceans 102(C3), 5753–5766 (1997)

    Article  Google Scholar 

  26. Rocha, C.B., Young, W.R., Grooms, I.: On Galerkin approximations of the surface active quasigeostrophic equations. J. Phys. Ocean. 46(1), 125–139 (2016)

    Article  Google Scholar 

  27. Roullet, G., McWilliams, J.C., Capet, X., Molemaker, M.J.: Properties of steady geostrophic turbulence with isopycnal outcropping. J. Phys. Ocean. 42(1), 18–38 (2012)

    Article  Google Scholar 

  28. Schmid, P.J.: Nonmodal stability theory. Ann. Rev. Fluid Mech. 39, 129–162 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, New York (2001)

    Book  MATH  Google Scholar 

  30. Smith, K.S.: The geography of linear baroclinic instability in Earth’s oceans. J. Mar. Res. 65(5), 655–683 (2007)

    Article  Google Scholar 

  31. Smith, R., Jones, P., Briegleb, B., Bryan, F., Danabasoglu, G., Dennis, J., Dukowicz, J., Eden, C., Fox-Kemper, B., Gent, P., et al.: The parallel ocean program (POP) reference manual. Los Alamos National Lab Technical Report 141, (2010)

  32. Stone, P.H.: On non-geostrophic baroclinic stability. J. Atmos. Sci. 23(4), 390–400 (1966)

    Article  Google Scholar 

  33. Stone, P.H.: On non-geostrophic baroclinic stability: Part II. J. Atmos. Sci. 27(5), 721–726 (1970)

    Article  Google Scholar 

  34. Trefethen, L.N., Embree, M.: Spectra and Pseudospectra of Nonnormal Matrices and Operators. Princeton University Press, Princeton (2005)

    MATH  Google Scholar 

  35. Tulloch, R., Marshall, J., Hill, C., Smith, K.S.: Scales, growth rates, and spectral fluxes of baroclinic instability in the ocean. J. Phys. Ocean. 41(6), 1057–1076 (2011)

    Article  Google Scholar 

  36. Vallis, G.K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, 2nd edn. Cambridge University Press, Cambridge (2017)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Grooms.

Additional information

Communicated by William Dewar.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

WB is supported by the US National Science Foundation grant DMS 1407340.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barham, W., Grooms, I. Exact instantaneous optimals in the non-geostrophic Eady problem and the detrimental effects of discretization. Theor. Comput. Fluid Dyn. 33, 125–139 (2019). https://doi.org/10.1007/s00162-019-00488-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00488-w

Keywords

Navigation