Skip to main content
Log in

Linear stability analysis of subaqueous bedforms using direct numerical simulations

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

We present results on the formation of ripples from linear stability analysis. The analysis is coupled with direct numerical simulations of turbulent open-channel flow over a fixed sinusoidal bed. The presence of the sediment bed is accounted for using the immersed boundary method. The simulations are used to extract the bed shear stress and consequently the sediment transport rate. The approach is different from traditional linear stability analysis in the sense that the phase lag between the bed topology and the sediment flux is obtained from the three-dimensional turbulent simulations. The stability analysis is performed on the Exner equation, whose input, the sediment flux, is provided from the simulations. We ran 11 simulations at a fixed shear Reynolds number of 180, but for different sediment bed wavelengths. The analysis allows us to sweep a large range of physical and modelling parameters to predict their effects on linear growth. The Froude number appears to be the critical controlling parameter in the early linear development of ripples, in contrast with the dominant role of particle Reynolds number during the equilibrium stage. We also present results from a wave packet analysis using a one-dimensional Gaussian ridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akiki, G., Balachandar, S.: Immersed boundary method with non-uniform distribution of Lagrangian markers for a non-uniform Eulerian mesh. J. Comput. Phys. 307, 34–59 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Ancey, C.: Stochastic modeling in sediment dynamics: Exner equation for planar bed incipient bed load transport conditions. J. Geophys. Res.: Earth Surf. 115(F2), 11–31 (2010)

  3. Andreotti, B., Claudin, P., Pouliquen, O.: Aeolian sand ripples: experimental study of fully developed states. Phys. Rev. Lett. 96(2), 028001 (2006)

    Article  Google Scholar 

  4. Apte, S.V., Mahesh, K., Lundgren, T.: Accounting for finite-size effects in simulations of disperse particle-laden flows. Int. J. Multiphase Flow 34(3), 260–271 (2008)

    Article  Google Scholar 

  5. Baas, J.H.: A flume study on the development and equilibrium morphology of current ripples in very fine sand. Sedimentology 41(2), 185–209 (1994)

    Article  Google Scholar 

  6. Baas, J.H.: An empirical model for the development and equilibrium morphology of current ripples in fine sand. Sedimentology 46(1), 123–138 (1999)

    Article  Google Scholar 

  7. Bennett, S.J., Best, J.L.: Mean flow and turbulence structure over fixed, two-dimensional dunes: implications for sediment transport and bedform stability. Sedimentology 42(3), 491–513 (1995)

    Article  Google Scholar 

  8. Blondeaux, P.: Sand ripples under sea waves Part 1. Ripple formation. J. Fluid Mech. 218, 1–17 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bohorquez, P., Ancey, C.: Stochastic-deterministic modeling of bed load transport in shallow water flow over erodible slope: linear stability analysis and numerical simulation. Adv. Water Resour. 83, 36–54 (2015)

    Article  Google Scholar 

  10. Bridge, J.S., Best, J.L.: Flow, sediment transport and bedform dynamics over the transition from dunes to upper-stage plane beds: implications for the formation of planar laminae. Sedimentology 35(5), 753–763 (1988)

    Article  Google Scholar 

  11. Calhoun, R.J., Street, R.L.: Turbulent flow over a wavy surface: neutral case. J. Geophys. Res. Oceans 106(C5), 9277–9293 (2001)

    Article  Google Scholar 

  12. Camporeale, C., Ridolfi, L.: Modal versus nonmodal linear stability analysis of river dunes. Phys. Fluids 23(10), 104102 (2011)

    Article  Google Scholar 

  13. Cantero, M.I., Balachandar, S., Garcia, M.H.: High-resolution simulations of cylindrical density currents. J. Fluid Mech. 590, 437–469 (2007)

    Article  MATH  Google Scholar 

  14. Caruso, A., Vesipa, R., Camporeale, C., Ridolfi, L., Schmid, P.J.: River bedform inception by flow unsteadiness: a modal and nonmodal analysis. Phys. Rev. E 93(5), 053110 (2016)

    Article  Google Scholar 

  15. Cayocca, F.: Long-term morphological modeling of a tidal inlet: the Arcachon Basin, France. Coastal Eng. 42(2), 115–142 (2001)

    Article  Google Scholar 

  16. Chakraborty, P., Balachandar, S., Adrian, R.J.: On the relationships between local vortex identification schemes. J. Fluid Mech. 535, 189–214 (2005). https://doi.org/10.1017/S0022112005004726

    Article  MathSciNet  MATH  Google Scholar 

  17. Charru, F., Andreotti, B., Claudin, P.: Sand ripples and dunes. Ann. Rev. Fluid Mech. 45, 469–493 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Charru, F., Mouilleron-Arnould, H.: Instability of a bed of particles sheared by a viscous flow. J. Fluid Mech. 452, 303–323 (2002)

    Article  MATH  Google Scholar 

  19. Cherukat, P., Na, Y., Hanratty, T.J., McLaughlin, J.B.: Direct numerical simulation of a fully developed turbulent flow over a wavy wall. Theor. Comput. Fluid Dyn. 11(2), 109–134 (1998)

    Article  MATH  Google Scholar 

  20. Chiew, Y.M., Parker, G.: Incipient sediment motion on non-horizontal slopes. J. Hydraul. Res. 32(5), 649–660 (1994)

    Article  Google Scholar 

  21. Chou, Y.J., Fringer, O.B.: A model for the simulation of coupled flow-bed form evolution in turbulent flows. J. Geophys. Res. Oceans 115(C10), 41–60 (2010)

    Article  Google Scholar 

  22. Claudin, P., Andreotti, B.: A scaling law for aeolian dunes on Mars, Venus, Earth, and for subaqueous ripples. Earth Planet. Sci. Lett. 252(1–2), 30–44 (2006). https://doi.org/10.1016/j.epsl.2006.09.004

    Article  Google Scholar 

  23. Coleman, S.E., Eling, B.: Sand wavelets in laminar open-channel flows. J. Hydraul. Res. 38(5), 331–338 (2000)

    Article  Google Scholar 

  24. Coleman, S.E., Melville, B.W.: Bed-form development. J. Hydraul. Eng. 120(5), 544–560 (1994)

    Article  Google Scholar 

  25. Coleman, S.E., Melville, B.W.: Initiation of bed forms on a flat sand bed. J. Hydraul. Eng. 122(5), 301–310 (1996)

    Article  Google Scholar 

  26. Colombini, M.: Revisiting the linear theory of sand dune formation. J. Fluid Mech. 502, 1–16 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Colombini, M., Stocchino, A.: Ripple and dune formation in rivers. J. Fluid Mech. 673, 121–131 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Cortese, T.A., Balachandar, S.: High performance spectral simulation of turbulent flows in massively parallel machines with distributed memory. Int. J. High Perf. Comput. Appl. 9(3), 187–204 (1995)

    Google Scholar 

  29. Engelund, F.: Instability of erodible beds. J. Fluid Mech. 42(02), 225–244 (1970)

    Article  Google Scholar 

  30. Engelund, F., Fredsoe, J.: Sediment ripples and dunes. Ann. Rev. Fluid Mech. 14(1), 13–37 (1982)

    Article  MATH  Google Scholar 

  31. Escauriaza, C., Sotiropoulos, F.: Initial stages of erosion and bed form development in a turbulent flow around a cylindrical pier. J. Geophys. Res. Earth Surf. 116(F3), 7–30 (2011)

    Article  Google Scholar 

  32. Flemming, B. W.: The role of grain size, water depth and flow velocity as scaling factors controlling the size of subaqueous dunes. In: Marine sandwave dynamics, International Workshop, pp. 23–24).Lille, France (2000)

  33. Fourriere, A., Claudin, P., Andreotti, B.: Bedforms in a turbulent stream: formation of ripples by primary linear instability and of dunes by nonlinear pattern coarsening. J. Fluid Mech. 649, 287–328 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hudson, J.D., Dykhno, L., Hanratty, T.J.: Turbulence production in flow over a wavy wall. Exp. Fluids 20(4), 257–265 (1996)

    Article  Google Scholar 

  35. Jain, S.C., Kennedy, J.F.: The spectral evolution of sedimentary bed forms. J Fluid Mech. 63(2), 301–314 (1974)

    Article  MATH  Google Scholar 

  36. Khosronejad, A., Kang, S., Borazjani, I., Sotiropoulos, F.: Curvilinear immersed boundary method for simulating coupled flow and bed morphodynamic interactions due to sediment transport phenomena. Adv. Water Resour. 34(7), 829–843 (2011)

    Article  Google Scholar 

  37. Kennedy, J.F.: The formation of sediment ripples, dunes, and antidunes. Ann. Rev. Fluid Mech. 1(1), 147–168 (1969)

    Article  MathSciNet  Google Scholar 

  38. Kidanemariam, A.G., Uhlmann, M.: Direct numerical simulation of pattern formation in subaqueous sediment. J. Fluid Mech. 750, R2 (2014)

    Article  Google Scholar 

  39. Kidanemariam, A.G., Uhlmann, M.: Formation of sediment patterns in channel flow: minimal unstable systems and their temporal evolution. J. Fluid Mech. (2017). (accepted arXiv:1702.06648)

  40. Kim, J., Moin, P., Moser, R.: Turbulence statistics in fully developed channel flow at low Reynolds number. J. Fluid Mech. 177, 133–166 (1987)

    Article  MATH  Google Scholar 

  41. Langlois, V., Valance, A.: Initiation and evolution of current ripples on a flat sand bed under turbulent water flow. Eur. Phys. J. E 22(3), 201–208 (2007)

    Article  Google Scholar 

  42. Meyer-Peter, E., Müller, R.: Formulas for bed-load transport. In: IAHSR 2nd meeting, Stockholm, appendix 2. IAHR (1948)

  43. McLean, S.R.: The stability of ripples and dunes. Earth-Sci. Rev. 29(1–4), 131–144 (1990)

    Article  Google Scholar 

  44. Nabi, M., Vriend, H.J., Mosselman, E., Sloff, C.J., Shimizu, Y.: Detailed simulation of morphodynamics: 3. Ripples and dunes. Water Resour. Res. 49, 5930–5943 (2013). https://doi.org/10.1002/wrcr.20457

    Article  Google Scholar 

  45. Nakagawa, H., Tsujimoto, T.: Spectral analysis of sand bed instability. J. Hydraul. Eng. 110(4), 467–483 (1984)

    Article  Google Scholar 

  46. Ouriemi, M., Aussillous, P., Guazzelli, E.: Sediment dynamics. Part 1. Bed-load transport by laminar shearing flows. J. Fluid Mech. 636, 295–319 (2009a)

    Article  MathSciNet  MATH  Google Scholar 

  47. Ouriemi, M., Aussillous, P., Guazzelli, E.: Sediment dynamics. Part 2. Dune formation in pipe flow. J. Fluid Mech. 636, 321–336 (2009b)

    Article  MathSciNet  MATH  Google Scholar 

  48. Paola, C., Voller, V.R.: A generalized Exner equation for sediment mass balance. J. Geophys. Res. Earth Surf. 110(F4), 14–21 (2005)

    Article  Google Scholar 

  49. Paarlberg, A.J., Dohmen-Janssen, C.M., Hulscher, S.J., Termes, P.: Modeling river dune evolution using a parameterization of flow separation. J. Geophys. Res. 114, F01014 (2009). https://doi.org/10.1029/2007JF000910

    Article  Google Scholar 

  50. Perillo, M.M., Prokocki, E.W., Best, J.L., Garcia, M.H.: Bed form genesis from bed defects under unidirectional, oscillatory, and combined flows. J. Geophys. Res. Earth Surf. 119(12), 2635–2652 (2014)

    Article  Google Scholar 

  51. Rauen, W.B., Binliang, L.I.N., Falconer, R.A.: Transition from wavelets to ripples in a laboratory flume with a diverging channel. Int. J. Sediment Res. 23(1), 1–12 (2008)

    Article  Google Scholar 

  52. Richards, K.J.: The formation of ripples and dunes on an erodible bed. J. Fluid Mech. 99(3), 597–618 (1980)

    Article  MATH  Google Scholar 

  53. Robert, A., Uhlman, W.: An experimental study on the ripple-dune transition. Earth Sur. Proces. Landf. 26(6), 615–629 (2001)

    Article  Google Scholar 

  54. Shields, A.: Application of similarity principles and turbulence research to bed-load movement. Soil Conservation Service (1936)

  55. Shringarpure, M., Cantero, M.I., Balachandar, S.: Dynamics of complete turbulence suppression in turbidity currents driven by monodisperse suspensions of sediment. J. Fluid Mech. 712, 384–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  56. Silvestro, S., Fenton, L.K., Vaz, D.A., Bridges, N.T., Ori, G.G.: Ripple migration and dune activity on Mars: Evidence for dynamic wind processes. Geophys Res Lett. 37(20), 203–208 (2010)

    Article  Google Scholar 

  57. Sotiropoulos, F., Khosronejad, A.: Sand waves in environmental flows: Insights gained by coupling large-eddy simulation with morphodynamics. Phys. Fluids 28(2), 021301 (2016)

    Article  Google Scholar 

  58. Sun, R., Xiao, H.: CFD-DEM simulations of current-induced dune formation and morphological evolution. Adv. Water Resour. 92, 228–239 (2016)

    Article  Google Scholar 

  59. Uhlmann, M.: An immersed boundary method with direct forcing for the simulation of particulate flows. J. Comput. Phys. 209(2), 448–476 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  60. Venditti, J.G., Church, M.A., Bennett, S.J.: Bed form initiation from a flat sand bed. J. Geophys. Res. Earth Surf. 110(F1), 9–27 (2005)

    Article  Google Scholar 

  61. Vesipa, R., Camporeale, C., Ridolfi, L.: A shallow-water theory of river bedforms in supercritical conditions. Phys. Fluids 24(9), 094104 (2012)

    Article  Google Scholar 

  62. Wong, M., Parker, G.: Reanalysis and correction of bed-load relation of Meyer-Peter and Müller using their own database. J. Hydraul. Eng. 132(11), 1159–1168 (2006)

    Article  Google Scholar 

  63. Yalin, M.S.: Mechanics of sediment transport. Pergamon, Tarrytown, New York (1977)

  64. Zgheib, N., Fedele, J.J., Hoyal, D.C.J.D., Perillo, M.M., Balachandar, S.: Direct numerical simulation of transverse ripples: 1. Pattern initiation and bedform interactions. J. Geophys. Res. Earth Surf. 123, 448–477 (2018a)

    Article  Google Scholar 

  65. Zgheib, N., Fedele, J.J., Hoyal, D.C.J.D., Perillo, M.M., Balachandar, S.: Direct numerical simulation of transverse ripples: 2. Self-similarity, bedform coarsening, and effect of neighboring structures. J. Geophys. Research: Earth Surf. 123, 478–500 (2018b)

    Article  Google Scholar 

  66. Zhou, J., Adrian, R.J., Balachandar, S., Kendall, T.M.: Mechanisms for generating coherent packets of hairpin vortices in channel flow. J. Fluid Mech. 387, 353–396 (1999). https://doi.org/10.1017/S002211209900467X

    Article  MathSciNet  MATH  Google Scholar 

  67. Zilker, D.P., Cook, G.W., Hanratty, T.J.: Influence of the amplitude of a solid wavy wall on a turbulent flow. Part 1. Non-separated flows. J. Fluid Mech. 82(1), 29–51 (1977)

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to ExxonMobil Upstream Research Company for providing support through Grant Number EM09296.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zgheib.

Additional information

Communicated by M. R. Malik.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zgheib, N., Balachandar, S. Linear stability analysis of subaqueous bedforms using direct numerical simulations. Theor. Comput. Fluid Dyn. 33, 161–180 (2019). https://doi.org/10.1007/s00162-019-00487-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-019-00487-x

Keywords

Navigation