Skip to main content
Log in

On the thermodynamics of the Swift–Hohenberg theory

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

We present the microbalance including the microforces, the first- and second-order microstresses for the Swift–Hohenberg equation concomitantly with their constitutive equations, which are consistent with the free-energy imbalance. We provide an explicit form for the microstress structure for a free-energy functional endowed with second-order spatial derivatives. Additionally, we generalize the Swift–Hohenberg theory via a proper constitutive process. Finally, we present one highly resolved three-dimensional numerical simulation to demonstrate the particular form of the resulting microstresses and their interactions in the evolution of the Swift–Hohenberg equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coleman, B.D., Noll, W.: The thermodynamics of elastic materials with heat conduction and viscosity. Arch. Ration. Mech. Anal. 13(1), 167–178 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Dalcin, L., Collier, N., Vignal, P., Côrtes, A.M.A., Calo, V.M.: PetIGA: a framework for high-performance isogeometric analysis. Comput. Methods Appl. Mech. Eng. 308, 151–181 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  3. Dell’Isola, F., Seppecher, P., Madeo, A.: Beyond Euler–Cauchy continua: the structure of contact actions in n-th gradient generalized continua: a generalization of the cauchy tetrahedron argument. In: dell’Isola, F., Gavrilyuk, S.L. (eds.) Variational Models and Methods in Solid and Fluid Mechanics, pp. 17–106. Springer, Wien (2011)

  4. Espath, L.F.R., Sarmiento, A.F., Vignal, P., Varga, B.O.N., Cortes, A.M.A., Dalcin, L., Calo, V.M.: Energy exchange analysis in droplet dynamics via the Navier–Stokes–Cahn–Hilliard model. J. Fluid Mech. 797, 389–430 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Fried, E.: Continua described by a microstructural field. Zeitschrift für angewandte Mathematik und Physik ZAMP 47(1), 168–175 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Fried, E.: On the relationship between supplemental balances in two theories for pure interface motion. SIAM J. Appl. Math. 66(4), 1130–1149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fried, E., Gurtin, M.E.: Continuum theory of thermally induced phase transitions based on an order parameter. Phys. D Nonlinear Phenom. 68(3), 326–343 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Fried, E., Gurtin, M.E.: Dynamic solid–solid transitions with phase characterized by an order parameter. Phys. D Nonlinear Phenom. 72(4), 287–308 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Fried, E., Gurtin, M.E.: Tractions, balances, and boundary conditions for nonsimple materials with application to liquid flow at small-length scales. Arch. Ration. Mech. Anal. 182(3), 513–554 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gurtin, M.E.: Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance. Phys. D Nonlinear Phenom. 92(3), 178–192 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Gurtin, M.E., Fried, E., Anand, L.: The Mechanics and Thermodynamics of Continua. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  12. Miehe, C., Aldakheel, F., Raina, A.: Phase field modeling of ductile fracture at finite strains: a variational gradient-extended plasticity-damage theory. Int. J. Plast. 84, 1–32 (2016)

    Article  Google Scholar 

  13. Praetorius, S., Voigt, A.: A Navier–Stokes phase-field crystal model for colloidal suspensions. J. Chem. Phys. 142(15), 154904 (2015)

    Article  ADS  Google Scholar 

  14. Sagiyama, K., Rudraraju, S., Garikipati, K.: Unconditionally stable, second-order accurate schemes for solid state phase transformations driven by mechano-chemical spinodal decomposition. ArXiv preprint arXiv:1508.00277 (2015)

  15. Sarmiento, A., Cortes, A.M.A., Garcia, D., Dalcin, L., Collier, N., Calo, V.M.: PetIGA-MF: a multi-field high-performance toolbox for structure-preserving B-splines spaces. J. Comput. Sci. 18, 117–131 (2016)

    Article  Google Scholar 

  16. Swift, J., Hohenberg, P.C.: Hydrodynamic fluctuations at the convective instability. Phys. Rev. A 15(1), 319 (1977)

    Article  ADS  Google Scholar 

  17. Thiele, U., Archer, A.J., Robbins, M.J., Gomez, H., Knobloch, E.: Localized states in the conserved Swift–Hohenberg equation with cubic nonlinearity. Phys. Rev. E 87(4), 042915 (2013)

    Article  ADS  Google Scholar 

  18. Toupin, R.A.: Elastic materials with couple-stresses. Arch. Ration. Mech. Anal. 11(1), 385–414 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  19. Toupin, R.A.: Theories of elasticity with couple-stress. Arch. Ration. Mech. Anal. 17(2), 85–112 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vignal, P.: Thermodynamically consistent algorithms for the solution of phase-field models. Ph.D. thesis, King Abdullah University of Science and Technology (2016)

  21. Vignal, P., Dalcin, L., Brown, D.L., Collier, N., Calo, V.M.: An energy-stable convex splitting for the phase-field crystal equation. Comput. Struct. 158, 355–368 (2015)

    Article  Google Scholar 

  22. Vignal, P., Sarmiento, A., Côrtes, A.M.A., Dalcin, L., Calo, V.M.: Coupling Navier–Stokes and Cahn–Hilliard equations in a two-dimensional annular flow configuration. Proc. Comput. Sci. 51, 934–943 (2015)

    Article  Google Scholar 

  23. Vignal, P., Collier, N., Dalcin, L., Brown, D.L., Calo, V.M.: An energy-stable time-integrator for phase-field models. Comput. Methods Appl. Mech. Eng. 158, 355–368 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. F. R. Espath.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Espath, L.F.R., Sarmiento, A.F., Dalcin, L. et al. On the thermodynamics of the Swift–Hohenberg theory. Continuum Mech. Thermodyn. 29, 1335–1345 (2017). https://doi.org/10.1007/s00161-017-0581-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0581-y

Keywords

Navigation