Skip to main content
Log in

The role of angular momentum in the laminar motion of viscous fluids

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

In laminar flow, viscous fluids must exert appropriate elastic shear stresses normal to the flow direction. This is a direct consequence of the balance of angular momentum. There is a limit, however, to the maximum elastic shear stress that a fluid can exert. This is the ultimate shear stress, \(\tau _\mathrm{y}\), of the fluid. If this limit is exceeded, laminar flow becomes dynamically incompatible. The ultimate shear stress of a fluid can be determined from experiments on plane Couette flow. For water at \(20\,^{\circ }\hbox {C}\), the data available in the literature indicate a value of \(\tau _\mathrm{y}\) of about \(14.4\times 10^{-3}\, \hbox {Pa}\). This study applies this value to determine the Reynolds numbers at which flowing water reaches its ultimate shear stress in the case of Taylor–Couette flow and circular pipe flow. The Reynolds numbers thus obtained turn out to be reasonably close to those corresponding to the onset of turbulence in the considered flows. This suggests a connection between the limit to laminar flow, on the one hand, and the occurrence of turbulence, on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Reynolds, O.: An experimental investigation of the circumstances which determine whether the motion of water in parallel channels shall be direct or sinuous and of the law of resistance in parallel channels. Phil. Trans. R. Soc. 174, 935–982 (1883)

    Article  MATH  Google Scholar 

  2. Tritton, D.J.: Physical Fluid Dynamics, 2nd edn. OUP, New York (1988)

    MATH  Google Scholar 

  3. Tsinober, A.: An Informal Conceptual Introduction to Turbulence, 2nd edn. Springer, New York (2009)

    Book  MATH  Google Scholar 

  4. Eames, I., Flor, J.B.: New developments in understanding interfacial processes in turbulent flow. Phil. Trans. R. Soc. A 369, 702–705 (2009)

    Article  ADS  Google Scholar 

  5. Paglietti, A.: Thermodynamic Limit to the Existence of Inanimate and Living Systems. Sepco-Acerten, Milano (2014)

    Google Scholar 

  6. Fung, Y.C., Tong, P.: Classical and Computational Solid Mechanics. World Scientific, Singapore (2001)

    Book  MATH  Google Scholar 

  7. Apakashev, R.A., Pavlov, V.V.: Determination of the shear strength and modulus of water at low flow velocities. Fluid Dyn. 32, 1–4 (1997)

    Article  ADS  Google Scholar 

  8. Badmaev, B.B., Bal’zhinov, S.A., Damdinov, B.B., Dembelova, T.S.: Low-frequency shear elasticity of liquids. Phys. Acoust. 56, 640–643 (2010)

    Article  Google Scholar 

  9. Greenwood, M.S., Bamberger, J.A.: Measurement of viscosity and shear wave velocity of a liquid or slurry for on-line process control. Ultrasonics 39, 623–630 (2002)

    Article  Google Scholar 

  10. Herzfeld, K.F., Litovitz, T.A.: Absorption and Dispersion of Ultrasonic Wave. Academic Press, New York (1959)

    Google Scholar 

  11. Joseph, D.D., Riccius, O., Arney, M.: Shear-wave speeds and elastic moduli for different liquids. Part 2. Experiments. J. Fluid Mech. 171, 309–338 (1986)

    Article  ADS  MATH  Google Scholar 

  12. Korenchenko, A.E., Beskachko, V.P.: Determining the shear modulus of water in experiments with a floating disk. J. Appl. Mech. Tech. Phys. 49, 80–83 (2008)

    Article  ADS  Google Scholar 

  13. Dudko, V.V., Yushkanov, A.A., Yalamov, Y.: Generation of shear waves in gas by a vibrating surface. High Temp. 47, 243–249 (2009)

    Article  Google Scholar 

  14. Cercignani, C., Majorana, A.: Analysis of thermal and shear waves according to BKG kinetic model. J. Appl. Math. Phys. ( ZAMP) 36, 699–711 (1985)

    Article  MATH  Google Scholar 

  15. Karabacak, D.M., Yakhot, V., Ekinci, K.L.: High-frequency nanofluidics: an experimental study using nanomechanical resonators. Phys. Rev. Lett. 98(25), 254505 (2007)

    Article  ADS  Google Scholar 

  16. Tillmark, N., Alfredson, P.H.: Experiments in plane Couette flow. J. Fluid Mech. 235, 89–102 (1992)

    Article  ADS  Google Scholar 

  17. Batchelor, G.K.: An Introduction to Fluid Dynamics. CUP, Cambridge (2000)

    Book  MATH  Google Scholar 

  18. Acheson, D.J.: Elementary Fluid Dynamics. OUP, New York (1990)

    MATH  Google Scholar 

  19. Sokolnikoff, I.S.: Mathematical Theory of Elasticity, 2nd edn. McGraw-Hill, New York (1956)

    MATH  Google Scholar 

  20. Malvern, E.M.: Introduction to the Mechanics of a Continuous Medium. Prentice-Hall, Englewood Cliffs, NJ (1969)

    MATH  Google Scholar 

  21. Feynman, R.P., Leighton, R.B., Sands, M.: The Feynman Lectures on Physics, 2nd edn. Addison-Wesley, Reading, MA (1975)

    MATH  Google Scholar 

  22. Sinha, M., Kevrekidis, I.G., Smits, A.J.: Experimental study of a Neimark–Sacker bifurcation in axially forced Taylor–Couette flow. J. Fluid Mech. 558, 1–32 (2006)

    Article  ADS  MATH  Google Scholar 

  23. White, F.M.: Fluid Mechanics, 7th edn. McGraw-Hill, New York (2011)

    Google Scholar 

  24. Pfenniger, W.: Transition in the inlet length of tubes at high Reynolds numbers. In: Lachman, G. (ed.) Boundary Layer and Flow Control, pp. 970–980. Pergamon, New York (1961)

    Google Scholar 

  25. Peng, X.F., Peterson, G.P., Wang, B.X.: Heat transfer characteristics of water flowing through microchannels. Exper. Heat Transf. 7, 265–283 (1994)

    Article  ADS  Google Scholar 

  26. Eckhardt, B.: Introduction: Turbulence transition in pipe flow: 125th anniversary of the publication of Reynolds’ paper. Phil. Trans. R. Soc. A 367, 449–455 (2009)

    Article  ADS  MATH  Google Scholar 

  27. Durst, F., Haddad, K., Ertunç, Ö.: Influence of test-rigs on the laminar-to-turbulent transition of pipe flows. In: Eckhardt, B. (ed.) Advances in Turbulence XII. Springer Proceedings in Physics, 135th edn, pp. 131–134. Springer, Berlin (2009)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paglietti.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paglietti, A. The role of angular momentum in the laminar motion of viscous fluids. Continuum Mech. Thermodyn. 29, 611–623 (2017). https://doi.org/10.1007/s00161-016-0549-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-016-0549-3

Keywords

Navigation