Skip to main content
Log in

Clamping force manipulation in 2D compliant gripper topology optimization under frictionless contact

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper exploits a clamping force-constrained topology optimization method for compliant grippers, wherein the ability of clamping force manipulation enables safe grasping actions on fragile objects. Specifically, flexibility of the compliant grippers is realized by employing the neo-Hookean material model that comprises both geometric and material non-linearity. To simulate the clamping force, the node-to-segment method is employed for contact behavior modeling. Two types of clamping force-related constraints are formulated: the P-norm aggregated peak clamping force constraint and the clamping force variance constraint. The sensitivities of these constraints are derived with the adjoint method and integrated into the topology optimization algorithm to restrict the peak force through clamping force redistribution. In the numerical implementation, two types of objective functions: the strain energy for finger-type grippers and displacement output for compliant mechanism-type grippers are utilized and all the related sensitivities are rigorously derived. Additionally, to enhance robustness of the optimized structures, the minimum length scale is strictly restricted to prevent the single-node hinge problem. The effectiveness of the proposed method is proved through several 2D numerical examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Data will be made available on request.

References

Download references

Acknowledgements

The authors would like to acknowledge the support from National Natural Science Foundation of China under Grant 52105462, the support from Natural Science Foundation of Shandong Province (ZR2020QE165), the support from Shandong Provincial Key Research and Development Program (Major Scientific and Technological Innovation Project) (2021CXGC010206), and the support from Qilu Young Scholar award (Shandong University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jikai Liu.

Ethics declarations

Competing of interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

The results are generated by MATLAB codes which are developed by the authors. The authors believe this article provides sufficient details for replication. In case of further queries, the part of original codes can be available upon request by contacting the corresponding author.

Additional information

Responsible editor: Marco Montemurro

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

1.1 Sensitivity of objective

In this study, the strain-energy objective is only considered under the contactless state. According to Eqs. (20), (41), and (46), the sensitivity regarding physical variables is derived as

$$\frac{{\partial \psi_{{\text{s}}} }}{{\partial \overline{\rho }}} = \mathop \sum \limits_{e = 1}^{{n_{{{\text{ele}}}} }} p\left( {E_{{\text{o}}} - E_{{{\text{min}}}} } \right)\overline{\rho }^{p - 1} \phi_{{\text{E}}} - p\left( {E_{{\text{o}}} - E_{{{\text{min}}}} } \right)\overline{\rho }^{p - 1} {{\varvec{\uplambda}}}_{{{\text{sg}}}}^{{\text{T}}} {\mathbf{f}}_{{{\text{intg}}}} ,$$
(59)

where \({\mathbf{f}}_{{{\text{intg}}}}\) is the internal force under contactless condition. \({{\varvec{\uplambda}}}_{{{\text{sg}}}}\) is the solution of the adjoint equation as

$${\mathbf{K}}_{{{\text{tg}}}} {{\varvec{\uplambda}}}_{{{\text{sg}}}} = \mathop \sum \limits_{e = 1}^{{n_{{{\text{ele}}}} }} \frac{{\partial \phi_{e} }}{{\partial {\mathbf{u}}_{{\text{g}}} }},$$
(60)

with

$$\frac{\partial \phi }{{\partial {\mathbf{u}}_{{\text{g}}} }} = \frac{\partial \phi }{{\partial {\mathbf{C}}}}\frac{{\partial {\mathbf{C}}}}{{\partial {\mathbf{u}}_{{\text{g}}} }},$$
(61)

where \({\mathbf{K}}_{{{\text{tg}}}}\) is the structural tangent stiffness without contact. The right Cauchy–Green deformation tensor \({\mathbf{C}}\) equals \({\mathbf{F}}^{{\text{T}}} {\mathbf{F}}\). \({\mathbf{F}}\) is the deformation gradient. Then, the derivative of \({\mathbf{C}}\) with respect to \({\mathbf{u}}_{{\text{g}}}\) is calculated as

$$\frac{{\partial {\mathbf{C}}_{ij} }}{{\partial {\mathbf{u}}_{{\text{g}}} }} = N_{mk,i} F_{mj} + F_{mi} N_{mk,j} ,$$
(62)

in which \(N_{mk}\) is one component of the element shape function matrix. The symbol \(mk,j\) denotes the derivative of the \(mk\) component regarding the \(j^{\text{th}}\) component of the spatial coordinates.

Similarly, the sensitivity of the displacement-output objective is computed as

$$\frac{{\partial \psi_{{\text{d}}} }}{{\partial \overline{\rho }}} = - p\left( {E_{{\text{o}}} - E_{{{\text{min}}}} } \right)\overline{\rho }^{p - 1} \left( {{{\varvec{\uplambda}}}_{{{\text{dg}}}}^{{\text{T}}} {\mathbf{f}}_{{{\text{intg}}}} + {{\varvec{\uplambda}}}_{{{\text{dc}}}}^{{\text{T}}} {\mathbf{f}}_{{{\text{intc}}}} } \right),$$
(63)

where \({\mathbf{f}}_{{{\text{intg}}}}\) and \({\mathbf{f}}_{{{\text{intc}}}}\) are the internal forces under contactless and contact conditions, respectively. \({{\varvec{\uplambda}}}_{{{\text{dg}}}}\) and \({{\varvec{\uplambda}}}_{{{\text{dc}}}}\) are the solutions of the adjoint equations of Eqs. (64) and (65), respectively.

$${\mathbf{K}}_{{{\text{tg}}}} {{\varvec{\uplambda}}}_{{{\text{dg}}}} = 2\omega \left( {{\mathbf{l}}^{{\text{T}}} {\mathbf{u}}_{{\text{g}}} - u_{{\text{g}}}^{\# } } \right){\mathbf{l}},$$
(64)
$${\mathbf{K}}_{{{\text{tc}}}} {{\varvec{\uplambda}}}_{{{\text{dc}}}} = 2\left( {{\mathbf{l}}^{{\text{T}}} {\mathbf{u}}_{{\text{c}}} - u_{{\text{c}}}^{\# } } \right){\mathbf{l}}.$$
(65)

Herein, \({\mathbf{K}}_{{{\text{tc}}}}\) is the structural tangent stiffness under contact condition.

The sensitivity analysis is typically performed with respect to the physical density variable \(\overline{\rho }\), however, to update the design variables, it is necessary to calculate the sensitivity with respect to \(\rho .\) This can be achieved using the chain rules according to the PDE filter in Eq. (43) and the Heaviside projection in Eq. (21) as

(66)

1.2 Sensitivity of clamping force constraint

Before deriving the sensitivity of , we first calculate the derivative of \(f_{{\text{n}}}\) with respect to \({\mathbf{u}}_{{\text{c}}}\). As given in Fig. 2, the contact possibly refers 6 conditions. The inside-left, inside-right, out-of-first, and out-of-last normal contact force have an identical expression as given in Eq. (2). Thus, the partial derivative is written as

$$\frac{{\partial f_{{\text{n}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \epsilon {\mathbf{n}}^{{\text{T}}} \frac{{\partial {\mathbf{g}}}}{{\partial {\mathbf{u}}_{{\text{c}}} }} + \epsilon {\mathbf{g}}^{{\text{T}}} \frac{{\partial {\mathbf{n}}}}{{\partial {\mathbf{u}}_{{\text{c}}} }}.$$
(67)

In this research, we only explore the compliant gripper against relatively stiffer objects and thus, the normal direction regards as a constant. The vector \({\mathbf{g}}\) can be calculated with

$${\mathbf{g}} = {\mathbf{G}}\left( {{\mathbf{c}} + {\mathbf{u}}_{{\text{c}}} } \right),$$
(68)

where c is the undeforming state coordinate of structure. The matrix \({\mathbf{G}}\) can extract the vector \({\mathbf{g}}\) from vector \({\mathbf{c}} + {\mathbf{u}}_{{\text{c}}}\). Hence,

$$\frac{{\partial {\mathbf{g}}}}{{\partial {\mathbf{u}}_{{\text{c}}} }} = {\mathbf{G}}.$$
(69)

Therefore, \(\frac{{\partial f_{{\text{n}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}\) defines as

$$\frac{{\partial f_{{\text{n}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \epsilon {\mathbf{n}}^{{\text{T}}} {\mathbf{G}}.$$
(70)

For the out-of-both and in-of both, the normal contact force is formulated as

$$f_{{\text{n}}} = w_{{\text{r}}} \epsilon g_{{{\text{nr}}}} + w_{{\text{l}}} \epsilon g_{{{\text{nl}}}} .$$
(71)

According to Eqs. (4) and (5), the derivatives of \(g_{{{\text{nr}}}}\) and \(g_{{{\text{nl}}}}\) with respect to \({\mathbf{u}}_{{\text{c}}}\) read

$$\frac{{\partial g_{{{\text{nr}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = {\mathbf{n}}_{{\text{r}}}^{{\text{T}}} {\mathbf{G}}_{{\mathbf{r}}} ,$$
(72)
$$\frac{{\partial g_{{{\text{nl}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = {\mathbf{n}}_{{\text{l}}}^{{\text{T}}} {\mathbf{G}}_{{\text{l}}} ,$$
(73)

in which \({\mathbf{G}}_{{\text{r}}}\) and \({\mathbf{G}}_{{\text{l}}}\) can extract the vector \({\mathbf{g}}_{{\text{r}}}\) and \({\mathbf{g}}_{{\text{l}}}\) from \({\mathbf{c}} + {\mathbf{u}}_{{\text{c}}}\). The weights have different expressions in out-of-both and in-of-both conditions. For out-of-both, according to Eqs. (6), (7), (8), and (9), the derivatives of \(w_{{\text{r}}}\) and \(w_{{\text{l}}}\) with respect to \({\mathbf{u}}_{{\text{c}}}\) are expressed as

$$\frac{{\partial w_{{\text{r}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = - \frac{{p_{{\text{r}}} {\mathbf{t}}_{{\text{l}}}^{{\text{T}}} + p_{{\text{l}}} {\mathbf{t}}_{{\text{r}}}^{{\text{T}}} }}{{\left( {p_{{\text{r}}} + p_{{\text{l}}} } \right)^{2} }}{\mathbf{G}}_{{\text{l}}} ,$$
(74)
$$\frac{{\partial w_{{\text{l}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \frac{{p_{{\text{r}}} {\mathbf{t}}_{{\text{l}}}^{{\text{T}}} + p_{{\text{l}}} {\mathbf{t}}_{{\text{r}}}^{{\text{T}}} }}{{\left( {p_{{\text{r}}} + p_{{\text{l}}} } \right)^{2} }}{\mathbf{G}}_{{\text{l}}} .$$
(75)

The derivatives of \(w_{{\text{r}}}\) and \(w_{{\text{l}}}\) with respect to \({\mathbf{u}}_{{\text{c}}}\) under in-of-both condition have the same expression as Eq. (74) and Eq. (75). Considering Eq. (71), Eq. (72), Eq. (73), Eq. (74), and Eq. (75), \(\frac{{\partial f_{{\text{n}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}\) is formulated as

$$\frac{{\partial f_{{\text{n}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \epsilon w_{{\text{r}}} {\mathbf{n}}_{{\text{r}}}^{{\text{T}}} {\mathbf{G}}_{{\text{r}}} + \epsilon w_{{\text{l}}} {\mathbf{n}}_{{\text{l}}}^{{\text{T}}} {\mathbf{G}}_{{\text{l}}} + \left( {\epsilon g_{{{\text{nl}}}} - \epsilon g_{{{\text{nr}}}} } \right)\frac{{p_{{\text{r}}} {\mathbf{t}}_{{\text{l}}}^{{\text{T}}} + p_{{\text{l}}} {\mathbf{t}}_{{\text{r}}}^{{\text{T}}} }}{{\left( {p_{{\text{r}}} + p_{{\text{l}}} } \right)^{2} }}{\mathbf{G}}_{{\text{l}}} .$$
(76)

According to the P-norm aggregation of Eq. (50), the \(\frac{{\partial F_{{{\text{pn}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}\) is expressed as

$$\frac{{\partial F_{{{\text{pn}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \frac{{c_{{\text{p}}} }}{{f_{{\text{n}}}^{\# } }}\left( {\mathop \sum \limits_{{m \in {\mathcal{V}}}} \left( {\frac{{f_{{{\text{n}}.m}} }}{{f_{{\text{n}}}^{\# } }}} \right)^{{p_{{\text{n}}} }} } \right)^{{\frac{1}{{p_{{\text{n}}} }} - 1}} \left( {\mathop \sum \limits_{{m \in {\mathcal{V}}}} \left( {\frac{{f_{{{\text{n}}.m}} }}{{f_{{\text{n}}}^{\# } }}} \right)^{{p_{{\text{n}}} - 1}} \frac{{\partial f_{{{\text{n}}.m}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}} \right).$$
(77)

Thus, according to Eqs. (50), (70), and (76), \(\frac{{\partial F_{{{\text{pn}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}\) is calculated through

$$\frac{{\partial F_{{{\text{pn}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \frac{{c_{{\text{p}}} }}{{f_{{\text{n}}}^{\# } }}\left( {\mathop \sum \limits_{{m \in {\mathcal{V}}}} \left( {\frac{{f_{{{\text{n}}.m}} }}{{f_{{\text{n}}}^{\# } }}} \right)^{{p_{{\text{n}}} }} } \right)^{{\frac{1}{{p_{{\text{n}}} }} - 1}} \left( {\mathop \sum \limits_{{m \in {\mathcal{V}}^{1} }} \left( {\frac{{f_{{{\text{n}}.m}} }}{{f_{{\text{n}}}^{\# } }}} \right)^{{p_{{\text{n}}} - 1}} \epsilon {\mathbf{n}}^{{\text{T}}} {\mathbf{G}} + \mathop \sum \limits_{{m \in {\mathcal{V}}^{2} }} \left( {\frac{{f_{{{\text{n}}.m}} }}{{f_{{\text{n}}}^{\# } }}} \right)^{{p_{{\text{n}}} - 1}} \left( {\epsilon w_{{\text{r}}} {\mathbf{n}}_{{\text{r}}}^{{\text{T}}} {\mathbf{G}}_{{\text{r}}} + \epsilon w_{{\text{l}}} {\mathbf{n}}_{{\text{l}}}^{{\text{T}}} {\mathbf{G}}_{{\text{l}}} + \left( {\epsilon g_{{{\text{nl}}}} - \epsilon g_{{{\text{nr}}}} } \right)\frac{{p_{{\text{r}}} {\mathbf{t}}_{{\text{l}}}^{{\text{T}}} + p_{{\text{l}}} {\mathbf{t}}_{{\text{r}}}^{{\text{T}}} }}{{\left( {p_{{\text{r}}} + p_{{\text{l}}} } \right)^{2} }}{\mathbf{G}}_{{\text{l}}} } \right)} \right),$$
(78)

where \({\mathcal{V}}^{1}\) is linked to the inside-left, inside-right, out-of-first, and out-of-last conditions. And \({\mathcal{V}}^{2}\) refers to the out-of-both and in-of-both conditions.

Regarding the variance constraint, Eq. (53) is reorganized into a concise expression, as

$$F_{{{\text{var}}}} = \frac{1}{{F_{{{\text{var}}}}^{\# } }}\frac{1}{{n_{{\text{c}}} }}\mathop \sum \limits_{{m \in {\mathcal{V}}}} \left( {f_{{{\text{n}}.m}} } \right)^{2} - \frac{1}{{F_{{{\text{var}}}}^{\# } }}\left( {\mathop \sum \limits_{{m \in {\mathcal{V}}}} \frac{{f_{{{\text{n}}.m}} }}{{n_{{\text{c}}} }}} \right)^{2} .$$
(79)

The term \(\frac{{\partial F_{{{\text{var}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}\) is shown below

$$\frac{{\partial F_{{{\text{var}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \frac{1}{{F_{{{\text{var}}}}^{\# } }}\frac{2}{{n_{{\text{c}}} }}\mathop \sum \limits_{{m \in {\mathcal{V}}}} \left( {f_{{{\text{n}}.m}} \frac{{\partial f_{{{\text{n}}.m}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}} \right) - \frac{2}{{F_{{{\text{var}}}}^{\# } }}\left( {\mathop \sum \limits_{{m \in {\mathcal{V}}}} \frac{{f_{{{\text{n}}.m}} }}{{n_{{\text{c}}} }}} \right)\mathop \sum \limits_{{m \in {\mathcal{V}}}} \left( {\frac{1}{{n_{{\text{c}}} }}\frac{{f_{{{\text{n}}.m}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}} \right).$$
(80)

According to Eqs. (70) and (76), \(\frac{{\partial F_{{{\text{var}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }}\) yields

$$\begin{gathered} \frac{{\partial F_{{{\text{var}}}} }}{{\partial {\mathbf{u}}_{{\text{c}}} }} = \frac{1}{{F_{{{\text{var}}}}^{\# } }}\frac{2}{{n_{{\text{c}}} }}\left( {\mathop \sum \limits_{{m \in {\mathcal{V}}^{1} }} \left( {f_{{{\text{n}}.m}} \frac{\epsilon }{{n_{{\text{c}}} }}{\mathbf{n}}^{{\text{T}}} {\mathbf{G}}} \right) + \mathop \sum \limits_{{m \in {\mathcal{V}}^{2} }} f_{{{\text{n}}.m}} \left( {\epsilon w_{{\text{r}}} {\mathbf{n}}_{{\text{r}}}^{{\text{T}}} {\mathbf{G}}_{{\text{r}}} + \epsilon w_{{\text{l}}} {\mathbf{n}}_{{\text{l}}}^{{\text{T}}} {\mathbf{G}}_{{\text{l}}} + \left( {\epsilon g_{{{\text{nl}}}} - \epsilon g_{{{\text{nr}}}} } \right)\frac{{p_{{\text{r}}} {\mathbf{t}}_{{\text{l}}}^{{\text{T}}} + p_{{\text{l}}} {\mathbf{t}}_{{\text{r}}}^{{\text{T}}} }}{{\left( {p_{{\text{r}}} + p_{{\text{l}}} } \right)^{2} }}{\mathbf{G}}_{{\text{l}}} } \right)} \right) \hfill \\ - \frac{2}{{F_{{{\text{var}}}}^{\# } }}\left( {\mathop \sum \limits_{{m \in {\mathcal{V}}}} \frac{{f_{{{\text{n}}.m}} }}{{n_{{\text{c}}} }}} \right)\left( {\mathop \sum \limits_{{m \in {\mathcal{V}}^{1} }} \frac{1}{{n_{{\text{c}}} }}\epsilon {\mathbf{n}}^{{\text{T}}} {\mathbf{G}} + \mathop \sum \limits_{{m \in {\mathcal{V}}^{2} }} \frac{1}{{n_{{\text{c}}} }}\left( {\epsilon w_{{\text{r}}} {\mathbf{n}}_{{\text{r}}}^{{\text{T}}} {\mathbf{G}}_{{\text{r}}} + \epsilon w_{{\text{l}}} {\mathbf{n}}_{{\text{l}}}^{{\text{T}}} {\mathbf{G}}_{{\text{l}}} + \left( {\epsilon g_{{{\text{nl}}}} - \epsilon g_{{{\text{nr}}}} } \right)\frac{{p_{{\text{r}}} {\mathbf{t}}_{{\text{l}}}^{{\text{T}}} + p_{{\text{l}}} {\mathbf{t}}_{{\text{r}}}^{{\text{T}}} }}{{\left( {p_{{\text{r}}} + p_{{\text{l}}} } \right)^{2} }}{\mathbf{G}}_{{\text{l}}} } \right)} \right). \hfill \\ \end{gathered}$$
(81)

The sensitivity of clamping force constraint is computed through

(82)

with the adjoint equation of

(83)

where is given in Eqs. (78) and (81). Sensitivity of the constraints can be similarly obtained using the chain rule, according to Eqs. (43) and (45). The constraint sensitivity with respect to ρ is expressed as

(84)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Wei, Z., Cui, Y. et al. Clamping force manipulation in 2D compliant gripper topology optimization under frictionless contact. Struct Multidisc Optim 66, 164 (2023). https://doi.org/10.1007/s00158-023-03621-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03621-w

Keywords

Navigation