Skip to main content

Advertisement

Log in

Design sensitivity analysis for transient responses of viscoelastically damped systems using model order reduction techniques

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Design sensitivity analysis (DSA) of transient responses, which are indispensable in gradient-based time domain optimization, often requires excessive computational resources for viscoelastically damped systems to directly differentiate and integrate the full-order model (FOM). In this paper, an efficient model-order reduction (MOR)–based DSA framework is developed for capturing the 1st- and 2nd-order derivatives of the transient responses and response functions for viscoelastically damped systems. The damping force is represented by a non-viscous damping model, which depends on the past history of motion via convolution integrals over suitable kernel functions. The direct differentiation method (DDM) is used to derive the DSA. Three robust modal reduction bases, namely multi-model (MM) method, modal strain energy modified by displacement residuals (MSER) method and improved approximation method (IAM) are introduced to reduce the system dimension. Based on a generalized damping model in expression of fraction formula, a reduced state-space formulation without convolution integral term is derived. The 1st- and 2nd-order derivatives of the transient responses and response functions are calculated using a modified precise integration method and the DDM on the reduced stage. The computational efficiency and accuracy of the presented methods are illustrated and compared by two examples. The results indicate that the computational time is significantly reduced by the proposed MOR methods maintaining fairly good accuracy. Among these methods, the MM method represents the most compromise between precise and efficiency and would be the best candidate to be the reduction basis for calculating the time domain DSA of large-scale viscoelastically damped systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Adhikari S (2013) Structural dynamic analysis with generalized damping models: Analysis. Wiley, Hoboken

    Book  MATH  Google Scholar 

  • Adhikari S, Friswell M I (2006) Calculation of eigensolution derivatives for nonviscously damped systems. AIAA J 44(8):1799–1806

    Article  Google Scholar 

  • Adhikari S, Wagner N (2004) Direct time-domain integration method for exponentially damped linear systems. Comput Struct 82(29):2453–2461

    Article  Google Scholar 

  • Alberdi R, Zhang G, Li L, Khandelwal K (2018) A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization. Int J Numer Meth Eng 115(1):1–56

    Article  MathSciNet  Google Scholar 

  • Balmès E (1996) Parametric families of reduced finite element models. theory and applications. Mech Syst Signal Pr 10(4):381–394

    Article  Google Scholar 

  • Besselink B, Tabak U, Lutowska A, van de Wouw N, Nijmeijer H, Rixen D J, Hochstenbach M, Schilders W (2013) A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control. J Sound Vib 332(19):4403–4422

  • Callejo A, Dopico D (2019) Direct sensitivity analysis of multibody systems: a vehicle dynamics benchmark. J Comput Nonlinear Dyn 14(2):021004

    Article  Google Scholar 

  • Callejo A, García de Jalón J, Luque P, Mántaras DA (2015) Sensitivity-based, multi-objective design of vehicle suspension systems. J Comput Nonlinear Dyn 10(3):031008

    Article  Google Scholar 

  • Chen J, Yang J, Jensen H (2020) Structural optimization considering dynamic reliability constraints via probability density evolution method and change of probability measure. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-020-02621-4

  • Cook R D, Plesha M E, Malkus DS, Witt RJ (2007) Concepts and applications of finite element analysis. Wiley, Hoboken

    Google Scholar 

  • Cortés F, Elejabarrieta M J (2006) Computational methods for complex eigenproblems in finite element analysis of structural systems with viscoelastic damping treatments. Comput Methods Appl Mech Engrg 195(44):6448–6462

    Article  MATH  Google Scholar 

  • Cortés F, Mateos M, Elejabarrieta M J (2009) A direct integration formulation for exponentially damped structural systems. Comput Struct 87(5):391–394

    Article  Google Scholar 

  • Ding Z, Li L, Hu Y, Li X, Deng W (2016) State-space based time integration method for structural systems involving multiple nonviscous damping models. Comput Struct 171:31–45

    Article  Google Scholar 

  • Ding Z, Li L, Hu Y (2018a) A modified precise integration method for transient dynamic analysis in structural systems with multiple damping models. Mech Syst Signal Pr 98:613–633

    Article  Google Scholar 

  • Ding Z, Li L, Kong J, Qin L (2018b) A modal projection-based reduction method for transient dynamic responses of viscoelastic systems with multiple damping models. Comput Struct 194:60–73

    Article  Google Scholar 

  • Ding Z, Li L, Li X, Kong J (2018c) A comparative study of design sensitivity analysis based on adjoint variable method for transient response of non-viscously damped systems. Mech Syst Signal Pr 110:390–411

    Article  Google Scholar 

  • Ding Z, Li L, Zou G, Kong J (2019) Design sensitivity analysis for transient response of non-viscously damped systems based on direct differentiate method. Mech Syst Signal Pr 121:322–342

    Article  Google Scholar 

  • Dopico D, González F, Luaces A, Saura M, García-Vallejo D (2018) Direct sensitivity analysis of multibody systems with holonomic and nonholonomic constraints via an index-3 augmented lagrangian formulation with projections. Nonlinear Dyn 93(4):2039–2056

    Article  Google Scholar 

  • Greene W H, Haftka R T (1989) Computational aspects of sensitivity calculations in transient structural analysis. Comput Struct 32(2):433–443

    Article  Google Scholar 

  • Han J S (2013) Calculation of design sensitivity for large-size transient dynamic problems using Krylov subspace-based model order reduction. J Mech Sci Technol 27(9):2789–2800

    Article  Google Scholar 

  • Hooijkamp E C, van Keulen F (2018) Topology optimization for linear thermo-mechanical transient problems: Modal reduction and adjoint sensitivities. Int J Numer Meth Eng 113(8):1230–1257

    Article  MathSciNet  Google Scholar 

  • Johnson C D, Kienholz D A (1982) Finite element prediction of damping in structures with constrained viscoelastic layers. AIAA J 20(9):1284–1290

    Article  Google Scholar 

  • Kai A J, Waisman H (2015) Topology optimization of viscoelastic structures using a time-dependent adjoint method. Comput Methods Appl Mech Eng 285:166–187

    Article  MathSciNet  MATH  Google Scholar 

  • Kai A J, Waisman H (2016) On the importance of viscoelastic response consideration in structural design optimization. Optim Eng 17(4):631–650

    Article  MathSciNet  MATH  Google Scholar 

  • Kang B S, Park G J, Arora J S (2006) A review of optimization of structures subjected to transient loads. Struct Multidiscip Optim 31(2):81–95

    Article  MathSciNet  MATH  Google Scholar 

  • Kang Z, Zhang X, Jiang S, Cheng G (2012) On topology optimization of damping layer in shell structures under harmonic excitations. Struct Multidiscip Optim 46(1):51–67

    Article  MathSciNet  MATH  Google Scholar 

  • Koh H S, Kim J H, Yoon G H (2020) Efficient topology optimization of multicomponent structure using substructuring-based model order reduction method. Comput Struct 228:106146

    Article  Google Scholar 

  • Kuether R J (2019) Two-tier model reduction of viscoelastically damped finite element models. Comput Struct 219:58–72

    Article  Google Scholar 

  • Lewandowski R, Łasecka-Plura M (2016) Design sensitivity analysis of structures with viscoelastic dampers. Comput Struct 164(1):95–107

    Article  Google Scholar 

  • Li L, Hu Y, Wang X, Ling L (2012) Computation of eigensolution derivatives for nonviscously damped systems using the algebraic method. AIAA J 50(10):2282–2284

    Article  Google Scholar 

  • Li L, Hu Y, Wang X (2013) Design sensitivity analysis of dynamic response of nonviscously damped systems. Mech Syst Signal Pr 41(1-2):613–638

    Article  Google Scholar 

  • Li L, Hu Y, Wang X (2014) Eliminating the modal truncation problem encountered in frequency responses of viscoelastic systems. J Sound Vib 333(4):1182–1192

    Article  Google Scholar 

  • Li T Y, Zeng Z (2005) A rank-revealing method with updating, downdating, and applications. SIAM J Matrix Anal Appl 26(4):918–946

    Article  MathSciNet  MATH  Google Scholar 

  • de Lima AMG, Da Silva AR, Rade DA, Bouhaddi N (2010a) Component mode synthesis combining robust enriched ritz approach for viscoelastically damped structures. Engrg Struct 32(5):1479–1488

    Article  Google Scholar 

  • de Lima AMG, Faria AW, Rade DA (2010b) Sensitivity analysis of frequency response functions of composite sandwich plates containing viscoelastic layers. Compos Struct 92(2):364–376

    Article  Google Scholar 

  • Lin R, Ng T (2019) An iterative method for exact eigenvalues and eigenvectors of general nonviscously damped structural systems. Eng Struct 180:630–641

    Article  Google Scholar 

  • Lin R, Mottershead J, Ng T (2020) A state-of-the-art review on theory and engineering applications of eigenvalue and eigenvector derivatives. Mech Syst Signal Pr 138:106536

    Article  Google Scholar 

  • Liu H, Zhang W, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim 51(6):1321–1333

    Article  MathSciNet  Google Scholar 

  • Machado M R, Adhikari S, Dos Santos JMC, Arruda JRF (2018) Estimation of beam material random field properties via sensitivity-based model updating using experimental frequency response functions. Mech Syst Signal Pr 102:180–197

    Article  Google Scholar 

  • Martins J R, Hwang J T (2013) Review and unification of methods for computing derivatives of multidisciplinary computational models. AIAA J 51(11):2582–2599

    Article  Google Scholar 

  • Mukhopadhyay T, Adhikari S, Batou A (2019) Frequency domain homogenization for the viscoelastic properties of spatially correlated quasi-periodic lattices. Int J Mech Sci 150:784–806

    Article  Google Scholar 

  • Park C H, Inman D J, Lam M J (1999) Model reduction of viscoelastic finite element models. J Sound Vib 219(4):619–637

    Article  Google Scholar 

  • Rouleau L, Deü JF, Legay A (2017) A comparison of model reduction techniques based on modal projection for structures with frequency-dependent damping. Mech Syst Signal Pr 90:110– 125

    Article  Google Scholar 

  • Singh K V (2016) Eigenvalue and eigenvector computation for discrete and continuous structures composed of viscoelastic materials. Int J Mech Sci 110:127–137

    Article  Google Scholar 

  • Takagi T, Sugeno M (1985) Fuzzy identification of systems and its applications to modeling and control. IEEE Trans Syst Cybernet 15(1):116–132

    Article  MATH  Google Scholar 

  • Trindade M A (2006) Reduced-order finite element models of viscoelastically damped beams through internal variables projection. J Vib Acoust 128(4):501–508

    Article  Google Scholar 

  • Wang L, Liang J, Zhang Z, Yang Y (2019) Nonprobabilistic reliability oriented topological optimization for multi-material heat-transfer structures with interval uncertainties. Struct Multidiscip Optim 59 (5):1599–1620

    Article  MathSciNet  Google Scholar 

  • Wang M, Au F (2006) Assessment and improvement of precise time step integration method. Comput Struct 84(12):779– 786

    Article  MathSciNet  Google Scholar 

  • Woodhouse J (1998) Linear damping models for structural vibration. J Sound Vib 215(3):547–569

    Article  MATH  Google Scholar 

  • Xiao M, Lu D, Breitkopf P, Raghavan B, Dutta S, Zhang W (2020) On-the-fly model reduction for large-scale structural topology optimization using principal components analysis. Struct Multidiscip Optim 62:209–230

    Article  MathSciNet  Google Scholar 

  • Xie X, Zheng H, Jonckheere S, van de Walle A, Pluymers B, Desmet W (2018) Adaptive model reduction technique for large-scale dynamical systems with frequency-dependent damping. Comput Methods Appl Mech Eng 332:363–381

  • Xie X, Zheng H, Jonckheere S, Desmet W (2019) Explicit and efficient topology optimization of frequency-dependent damping patches using moving morphable components and reduced-order models. Comput Methods Appl Mech Eng 355:591–613

    Article  MathSciNet  MATH  Google Scholar 

  • Yoon G H (2010) Structural topology optimization for frequency response problem using model reduction schemes. Comput Methods Appl Mech Eng 199(25-28):1744–1763

    Article  MathSciNet  MATH  Google Scholar 

  • Yun K S, Youn S K (2017) Design sensitivity analysis for transient response of non-viscously damped dynamic systems. Struct Multidiscip Optim 55(6):2197–2210

    Article  MathSciNet  Google Scholar 

  • Zghal S, Bouazizi M L, Bouhaddi N, Nasri R (2015) Model reduction methods for viscoelastic sandwich structures in frequency and time domains. Finite Elem Anal Des 93:12–29

    Article  Google Scholar 

  • Zhang X, Kang Z (2014) Dynamic topology optimization of piezoelectric structures with active control for reducing transient response. Comput Methods Appl Mech Eng 281:200–219

    Article  MathSciNet  MATH  Google Scholar 

  • Zhao J, Wang C (2016) Dynamic response topology optimization in the time domain using model reduction method. Struct Multidiscip Optim 53(1):101–114

    Article  MathSciNet  Google Scholar 

  • Zhao J, Yoon H, Youn B D (2020) An adaptive hybrid expansion method (ahem) for efficient structural topology optimization under harmonic excitation. Struct Multidiscip Optim 61(3):895–921

    Article  MathSciNet  Google Scholar 

  • Zhong W (2004) On precise integration method. J Comput Appl Math 163(1):59–78

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51805383, 51809201), the Hong Kong Scholars Program (Grant No. XJ2019019) and the Hubei Provincial Natural Science Foundation of China (Grant Nos. 2018CFB345, 2018CFB371).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-Hsin Liao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Gengdong Cheng

Replication of results

The MATLAB codes of the proposed MOR-DSA methods are available upon request to the first and corresponding authors.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A:: Specific expressions of some matrices in Section 4.1

The expressions of the relative reduced matrices in (37) are

$$ {\bar{\mathbf E}} = diag({{\mathbf{I}}_{{{\bar{r}}_{1}}}} \otimes {{\mathbf{E}}_{1}},{{\mathbf{I}}_{{{\bar{r}}_{2}}}} \otimes {{\mathbf{E}}_{2}}, {\cdots} ,{{\mathbf{I}}_{{{\bar{r}}_{n}}}} \otimes {{\mathbf{E}}_{n}})\in \mathbb{R}^{{\bar{p} \times \bar{p}}}, $$
(66)
$$ {\bar{\mathbf W}} = diag({{\mathbf{I}}_{{{\bar{r}}_{1}}}} \otimes {{\mathbf{W}}_{1}},{{\mathbf{I}}_{{{\bar{r}}_{2}}}} \otimes {{\mathbf{W}}_{2}}, {\cdots} ,{{\mathbf{I}}_{{{\bar{r}}_{n}}}} \otimes {{\mathbf{W}}_{n}})\in \mathbb{R}^{{\bar{p} \times \bar{p}}}, $$
(67)
$$ {\bar{\mathbf{L}}} = \left[ {{{\bar{\mathbf{L}}}_{1}}{{({{\mathbf{I}}_{{{\bar{r}}_{1}}}} \otimes {{\mathbf{P}}_{1}})}^{T}},{{\bar{\mathbf{L}}}_{2}}{{({{\mathbf{I}}_{{{\bar{r}}_{2}}}} \otimes {{\mathbf{P}}_{2}})}^{T}}, {\cdots} ,{{\bar{\mathbf{L}}}_{n}}{{({{\mathbf{I}}_{{{\bar{r}}_{n}}}} \otimes {{\mathbf{P}}_{n}})}^{T}}} \right] \in \mathbb{R}^{{Nm \times \bar{p}}}, $$
(68)
$$ {\bar{\mathbf R}} = \left[ {{{\bar{\mathbf R}}_{1}}{{({{\mathbf{I}}_{{{\bar{r}}_{1}}}} \otimes {{\mathbf{Q}}_{1}})}^{T}},{{\bar{\mathbf R}}_{2}}{{({{\mathbf{I}}_{{{\bar{r}}_{2}}}} \otimes {{\mathbf{Q}}_{2}})}^{T}}, {\cdots} ,{{\bar{\mathbf R}}_{n}}{{({{\mathbf{I}}_{{{\bar{r}}_{n}}}} \otimes {{\mathbf{Q}}_{n}})}^{T}}} \right] \in \mathbb{R}^{{Nm \times \bar{p}}}, $$
(69)
$$ \bar{p} = \sum\limits_{k = 1}^{n} {{{\bar{r}}_{k}}{q_{k}}}. $$
(70)

Appendix B:: The first-order sensitivity derivatives in (51)

As defined in (8) and Appendix A, the matrices \({\bar {\mathbf {L}}},{\bar {\mathbf W}},{\bar {\mathbf R}},{\bar {\mathbf E}}\) are related to the viscoelastic damping model involved, which are composed of the relaxation parameters, the order of the damping models and the identity matrix. If the design variable pi is not related to the damping relaxation parameters, the first-order derivatives of \({\bar {\mathbf {L}}},{\bar {\mathbf W}},{\bar {\mathbf R}},{\bar {\mathbf E}}\) are all zero. On the contrary, when the damping model parameters are chosen to be the design variable, the first-order derivatives of \({\bar {\mathbf {L}}},{\bar {\mathbf W}},{\bar {\mathbf R}},{\bar {\mathbf E}}\) should be considered. As defined in (35), \({{\bar {\mathbf {L}}}_k},{{\bar {\mathbf R}}_k}\) are the full column rank of the reduced viscoelastic damping coefficient matrix. It describes the distribution of the damping materials, which is independent of the parameters of the damping models. Besides, Wk,Qk are also independent of any design parameters. Therefore, we have

$$ \frac{{\partial {{{\bar{\mathbf{L}}}}_{k}}}}{{\partial {p_{i}}}} = {\mathbf{0}},{\text{ }}\frac{{\partial {{{\bar{\mathbf R}}}_{k}}}}{{\partial {p_{i}}}} = {\mathbf{0}},\frac{{\partial {{\mathbf{W}}_{k}}}}{{\partial {p_{i}}}} = {\mathbf{0}},\frac{{\partial {{\mathbf{Q}}_{k}}}}{{\partial {p_{i}}}} = {\mathbf{0}},\frac{{\partial {{\bar{\mathbf{C}}}_{0}}}}{{\partial {p_{i}}}} = {\mathbf{0}}. $$
(71)

Substituting (71) into (66)–(69), one can derive the first-order derivatives of the \({\bar {\mathbf {L}}},{\bar {\mathbf W}},{\bar {\mathbf R}},{\bar {\mathbf E}}\):

$$ \begin{array}{l} \frac{{\partial {\bar{\mathbf{L}}}}}{{\partial {p_{i}}}} = \left[ {{{{\bar{\mathbf{L}}}}_{1}}{{({{\mathbf{I}}_{{{\bar r}_{1}}}} \otimes \frac{{\partial {{\mathbf{P}}_{1}}}}{{\partial {p_{i}}}})}^{T}},{{{\bar{\mathbf{L}}}}_{2}}{{({{\mathbf{I}}_{{{\bar r}_{2}}}} \otimes \frac{{\partial {{\mathbf{P}}_{2}}}}{{\partial {p_{i}}}})}^{T}}, {\cdots} ,{{{\bar{\mathbf{L}}}}_{N}}{{({{\mathbf{I}}_{{{\bar r}_{n}}}} \otimes \frac{{\partial {{\mathbf{P}}_{n}}}}{{\partial {p_{i}}}})}^{T}}} \right],\\ \frac{{\partial {\bar{\mathbf E}}}}{{\partial {p_{i}}}} = \left[ {{{\mathbf{I}}_{{{\bar r}_{1}}}} \otimes \frac{{\partial {{\mathbf{E}}_{1}}}}{{\partial {p_{i}}}},{{\mathbf{I}}_{{{\bar r}_{2}}}} \otimes \frac{{\partial {{\mathbf{E}}_{2}}}}{{\partial {p_{i}}}}, {\cdots} ,{{\mathbf{I}}_{{{\bar r}_{n}}}} \otimes \frac{{\partial {{\mathbf{E}}_{n}}}}{{\partial {p_{i}}}}} \right],\\ \frac{{\partial {\bar{\mathbf W}}}}{{\partial {p_{i}}}} = {\mathbf{0}},\frac{{\partial {\bar{\mathbf R}}}}{{\partial {p_{i}}}} = {\mathbf{0}}, \end{array} $$
(72)

where \(\frac {{\partial {{\mathbf {P}}_k}}}{{\partial {p_i}}},\frac {{\partial {{\mathbf {E}}_k}}}{{\partial {p_i}}}\) can be easily obtained from (8). Therefore, the specific expressions of the terms in (51) are

$$ \begin{array}{@{}rcl@{}} \frac{{\partial \left( { - {{{\bar{\mathbf{M}}}}^{- 1}}{{\bar{\mathbf{C}}}_{0}}} \right)}}{{\partial {p_{i}}}} & = {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}{{\bar{\mathbf{C}}}_{0}} - {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {{\bar{\mathbf{C}}}_{0}}}}{{\partial {p_{i}}}}{\text{ }} \to \\& {\text{ }}\frac{{\partial \left( { - {{{\bar{\mathbf{M}}}}^{- 1}}{{\bar{\mathbf{C}}}_{0}}} \right)}}{{\partial {p_{i}}}} = {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}{{\bar{\mathbf{C}}}_{0}}, \end{array} $$
(73)
$$ \frac{{\partial \left( { - {{{\bar{\mathbf{M}}}}^{{\text{ - 1}}}}{\bar{\mathbf{L}}}} \right)}}{{\partial {p_{i}}}} = {{\bar{\mathbf{M}}}^{{\text{ - 1}}}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{{\text{ - 1}}}}{\bar{\mathbf{L}}} - {{\bar{\mathbf{M}}}^{{\text{ - 1}}}}\frac{{\partial {\bar{\mathbf{L}}}}}{{\partial {p_{i}}}}, $$
(74)
$$ \begin{array}{@{}rcl@{}} \frac{{\partial \left( { - {{{\bar{\mathbf W}}}^{- 1}}{{{\bar{\mathbf R}}}^{T}}} \right)}}{{\partial {p_{i}}}} &= {{\bar{\mathbf W}}^{- 1}}\frac{{\partial {\bar{\mathbf W}}}}{{\partial {p_{i}}}}{{\bar{\mathbf W}}^{- 1}}{{\bar{\mathbf R}}^{T}} - {{\bar{\mathbf W}}^{- 1}}\frac{{\partial {{{\bar{\mathbf R}}}^{T}}}}{{\partial {p_{i}}}}{\text{ }} \to \\& {\text{ }}\frac{{\partial \left( { - {{{\bar{\mathbf W}}}^{- 1}}{{{\bar{\mathbf R}}}^{T}}} \right)}}{{\partial {p_{i}}}} = {\mathbf{0}}, \end{array} $$
(75)
$$ \begin{array}{@{}rcl@{}} \frac{{\partial \left( {{{{\bar{\mathbf W}}}^{- 1}}{\bar{\mathbf E}}} \right)}}{{\partial {p_{i}}}} & = - {{\bar{\mathbf W}}^{- 1}}\frac{{\partial {\bar{\mathbf W}}}}{{\partial {p_{i}}}}{{\bar{\mathbf W}}^{- 1}}{\bar{\mathbf E}} + {{\bar{\mathbf W}}^{- 1}}\frac{{\partial {\bar{\mathbf E}}}}{{\partial {p_{i}}}}{\text{ }} \to \\& {\text{ }}\frac{{\partial \left( {{{{\bar{\mathbf W}}}^{- 1}}{\bar{\mathbf E}}} \right)}}{{\partial {p_{i}}}} = {{\bar{\mathbf W}}^{- 1}}\frac{{\partial {\bar{\mathbf E}}}}{{\partial {p_{i}}}}. \end{array} $$
(76)

Appendix C:: The second-order sensitivity derivatives in (58)

The second-order derivatives of (58) are as follows:

$$ \begin{array}{@{}rcl@{}} \frac{{{\partial^{2}}\left( { - {{{\bar{\mathbf{M}}}}^{- 1}}{\bar{\mathbf{K}}}} \right)}}{{\partial {p_{i}}\partial {p_{j}}}} &=& \frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}{\bar{\mathbf{K}}} + {{\bar{\mathbf{M}}}^{- 1}}\frac{{{\partial^{2}}{\bar{\mathbf{M}}}}}{{\partial {p_{i}}\partial {p_{j}}}}{{\bar{\mathbf{M}}}^{- 1}}{\bar{\mathbf{K}}} \\&& +{{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}\frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}{\bar{\mathbf{K}}} + {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{K}}}}}{{\partial {p_{j}}}}\\&&- \frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}\frac{{\partial {\bar{\mathbf{K}}}}}{{\partial {p_{i}}}} - {{\bar{\mathbf{M}}}^{- 1}}\frac{{{\partial^{2}}{\bar{\mathbf{K}}}}}{{\partial {p_{i}}\partial {p_{j}}}}, \end{array} $$
(77)
$$ \begin{array}{@{}rcl@{}} \frac{{{\partial^{2}}\left( { - {{{\bar{\mathbf{M}}}}^{- 1}}{{\bar{\mathbf{C}}}_{0}}} \right)}}{{\partial {p_{i}}\partial {p_{j}}}}&=& \frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}{{\bar{\mathbf{C}}}_{0}} + {{\bar{\mathbf{M}}}^{- 1}}\frac{{{\partial^{2}}{\bar{\mathbf{M}}}}}{{\partial {p_{i}}\partial {p_{j}}}}{{\bar{\mathbf{M}}}^{- 1}}{{\bar{\mathbf{C}}}_{0}} \\&& + {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}\frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}{{\bar{\mathbf{C}}}_{0}}, \end{array} $$
(78)
$$ \begin{array}{@{}rcl@{}} \frac{{{\partial^{2}}\left( { - {{{\bar{\mathbf{M}}}}^{- 1}}{\bar{\mathbf{L}}}} \right)}}{{\partial {p_{i}}\partial {p_{j}}}} &= &\frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}{{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}{\bar{\mathbf{L}}} + {{\bar{\mathbf{M}}}^{- 1}}\frac{{{\partial^{2}}{\bar{\mathbf{M}}}}}{{\partial {p_{i}}\partial {p_{j}}}}{{\bar{\mathbf{M}}}^{- 1}}{\bar{\mathbf{L}}} \\&&+ {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}\frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}{\bar{\mathbf{L}}} + {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{L}}}}}{{\partial {p_{j}}}} \\&&- \frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{j}}}}\frac{{\partial {\bar{\mathbf{L}}}}}{{\partial {p_{i}}}} - {{\bar{\mathbf{M}}}^{- 1}}\frac{{{\partial^{2}}{\bar{\mathbf{L}}}}}{{\partial {p_{i}}\partial {p_{j}}}}, \end{array} $$
(79)
$$ \frac{{{\partial^{2}}\left( { - {{{\bar{\mathbf W}}}^{- 1}}{{{\bar{\mathbf R}}}^{T}}} \right)}}{{\partial {p_{i}}\partial {p_{j}}}} = {\mathbf{0}},\frac{{{\partial^{2}}\left( { - {{{\bar{\mathbf W}}}^{- 1}}{\bar{\mathbf E}}} \right)}}{{\partial {p_{i}}\partial {p_{j}}}} = {{\bar{\mathbf W}}^{- 1}}\frac{{{\partial^{2}}{\bar{\mathbf E}}}}{{\partial {p_{i}}\partial {p_{j}}}}, $$
(80)

where

$$ \frac{{\partial {{{\bar{\mathbf{M}}}}^{- 1}}}}{{\partial {p_{i}}}} = - {{\bar{\mathbf{M}}}^{- 1}}\frac{{\partial {\bar{\mathbf{M}}}}}{{\partial {p_{i}}}}{{\bar{\mathbf{M}}}^{- 1}}, $$
(81)
$$ \frac{{{\partial^{2}}{\bar{\mathbf{M}}}}}{{\partial {p_{i}}\partial {p_{j}}}} = {{\mathbf{T}}^{T}}\frac{{{\partial^{2}}{\mathbf{M}}}}{{\partial {p_{i}}\partial {p_{j}}}}{\mathbf{T}},\quad\frac{{{\partial^{2}}{\bar{\mathbf{K}}}}}{{\partial {p_{i}}\partial {p_{j}}}} = {{\mathbf{T}}^{T}}\frac{{{\partial^{2}}{\mathbf{K}}}}{{\partial {p_{i}}\partial {p_{j}}}}{\mathbf{T}}, $$
(82)
$$ \frac{{{\partial^{2}}{\bar{\mathbf{L}}}}}{{\partial {p_{i}}\partial {p_{j}}}} = \left[ {{{{\bar{\mathbf{L}}}}_{1}}{{({{\mathbf{I}}_{{{\bar r}_{1}}}} \otimes \frac{{{\partial^{2}}{{\mathbf{P}}_{1}}}}{{\partial {p_{i}}\partial {p_{j}}}})}^{T}}, {\cdots} , {{{\bar{\mathbf{L}}}}_{N}}{{({{\mathbf{I}}_{{{\bar r}_{n}}}} \otimes \frac{{{\partial^{2}}{{\mathbf{P}}_{n}}}}{{\partial {p_{i}}\partial {p_{j}}}})}^{T}}} \right], $$
(83)
$$ \frac{{{\partial^{2}}{\bar{\mathbf E}}}}{{\partial {p_{i}}\partial {p_{j}}}} = \left[ {{{\mathbf{I}}_{{{\bar r}_{1}}}} \otimes \frac{{{\partial^{2}}{{\mathbf{E}}_{1}}}}{{\partial {p_{i}}\partial {p_{j}}}},{{\mathbf{I}}_{{{\bar r}_{2}}}} \otimes \frac{{{\partial^{2}}{{\mathbf{E}}_{2}}}}{{\partial {p_{i}}\partial {p_{j}}}}, {\cdots} ,{{\mathbf{I}}_{{{\bar r}_{n}}}} \otimes \frac{{{\partial^{2}}{{\mathbf{E}}_{n}}}}{{\partial {p_{i}}\partial {p_{j}}}}} \right]. $$
(84)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, Z., Shi, J., Gao, Q. et al. Design sensitivity analysis for transient responses of viscoelastically damped systems using model order reduction techniques. Struct Multidisc Optim 64, 1501–1526 (2021). https://doi.org/10.1007/s00158-021-02937-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02937-9

Keywords

Navigation