Skip to main content
Log in

Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The multi-fidelity metamodeling method can dramatically improve the efficiency of metamodeling for computationally expensive engineering problems when multiple levels of fidelity data are available. In this paper, an efficient and novel adaptive multi-fidelity sparse polynomial chaos-Kriging (AMF-PCK) metamodeling method is proposed for accurate global approximation. This approach, by first using low-fidelity computations, builds the PCK model as a model trend for the high-fidelity function and captures the relative importance of the significant sparse polynomial bases selected by least angle regression (LAR). Then, by using high-fidelity model evaluations, the developed method utilizes the trend information to adaptively refine a scaling PCK model using an adaptive correction polynomial expansion-Gaussian process modeling. Here, the most relevant sparse polynomial basis set and the optimal correction expansion are adaptively identified and constructed based on a devised nested leave-one-out cross-validation-based LAR procedure. As a result, the optimal AMF-PCK metamodel is adaptively established, which combines advantages of high flexibility and strong nonlinear modeling ability. Moreover, an adaptive sequential sampling approach is specially developed to further improve the multi-fidelity metamodeling efficiency. The developed method is evaluated by several benchmark functions and two practically challenging transonic aerodynamic modeling applications. A comprehensive comparison with the popular hierarchical Kriging, universal Kriging, and LAR-PCK approaches demonstrates that the proposed method is the most efficient and provides the best global approximation accuracy, with particular superiority for quantities of interest in the multimodal and highly nonlinear landscape. This novel method is very promising for efficient uncertainty analysis and surrogate-based optimization of expensive engineering problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Aurenhammer F (1991) Voronoi diagrams—a survey of a fundamental geometric data structure [J]. ACM Comput Surv (CSUR) 23(3):345–405

    Article  Google Scholar 

  • Bachoc FJCS, Analysis D (2013) Cross validation and maximum likelihood estimations of hyper-parameters of Gaussian processes with model misspecification [J]. Comput Stat Data Anal 66:55–69

    Article  MathSciNet  MATH  Google Scholar 

  • Bellary SAI, Samad A, Couckuyt I, Dhaene T (2016) A comparative study of kriging variants for the optimization of a turbomachinery system [J]. Eng Comput 32(1):49–59

    Article  Google Scholar 

  • Bertram A, Zimmermann R (2018) Theoretical investigations of the new Cokriging method for variable-fidelity surrogate modeling [J]. Adv Comput Math 44(6):1693–1716

    Article  MathSciNet  MATH  Google Scholar 

  • Blatman G, Sudret B (2011) Adaptive sparse polynomial chaos expansion based on least angle regression [J]. J Comput Phys 230(6):2345–2367

    Article  MathSciNet  MATH  Google Scholar 

  • Cai X, Qiu H, Gao L, Wei L, Shao X (2017a) Adaptive radial-basis-function-based multifidelity metamodeling for expensive black-box problems [J]. AIAA J:2424–2436

  • Cai X, Qiu H, Gao L, Shao X (2017b) Metamodeling for high dimensional design problems by multi-fidelity simulations [J]. Struct Multidiscip Optim 56(1):151–166

    Article  MathSciNet  Google Scholar 

  • Cameron RH, Martin WT (1947) The orthogonal development of non-linear functionals in series of Fourier-Hermite functionals [J]. Ann Math 48(2):385–392

    Article  MathSciNet  MATH  Google Scholar 

  • Cook PH, Firmin MCP, Mcdonald MA (1979) Aerofoil RAE 2822 - Pressure distributions, and boundary layer and wake measurements [J]. AGARD Advisory Report No 138

  • Couckuyt I, Dhaene T, Demeester P (2014) OoDACE toolbox: a flexible object-oriented kriging implementation [J]. J Mach Learn Res 15(1):3183–3186

    MATH  Google Scholar 

  • Diaz P, Doostan A, Hampton J (2018) Sparse polynomial chaos expansions via compressed sensing and D-optimal design [J]. Comput Methods Appl Mech Eng 336:640–666

    Article  MathSciNet  MATH  Google Scholar 

  • Efron B, Hastie T, Johnstone I, Tibshirani R (2004) Least angle regression [J]. Ann Stat 32(2):407–499

    Article  MathSciNet  MATH  Google Scholar 

  • Eldred M, Dunlavy D. Formulations for surrogate-based optimization with data fit, multifidelity, and reduced-order models [C]. Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, (2006): 7117

  • Fernández-Godino M G, Park C, Kim N H, Haftka T (2017) R. Review of multi-fidelity models [J]. arXiv (160907196v3)

  • Fernández-Godino MG, Dubreuil S, Bartoli N, Gogu C, Balachandar S, Haftka RT (2019a) Linear regression-based multifidelity surrogate for disturbance amplification in multiphase explosion [J]. Struct Multidiscip Optim 60(6):2205–2220

    Article  Google Scholar 

  • Fernández-Godino MG, Park C, Kim NH, Haftka RT (2019b) Issues in deciding whether to use multifidelity surrogates [J]. AIAA J 57(5):2039–2054

    Article  Google Scholar 

  • Forrester AI, Sóbester A, Keane AJ (2007) Multi-fidelity optimization via surrogate modelling [J]. Proceed Royal Soc: Math, Phys Eng Sci 463(2088):3251–3269

    MathSciNet  MATH  Google Scholar 

  • Ginsbourger D, Dupuy D, Badea A, Carraro L, Roustant O (2009) A note on the choice and the estimation of kriging models for the analysis of deterministic computer experiments [J]. Appl Stoch Model Bus Ind 25(2):115–131

    Article  MathSciNet  MATH  Google Scholar 

  • Guo Z, Song L, Park C, Li J, Haftka RT (2018) Analysis of dataset selection for multi-fidelity surrogates for a turbine problem [J]. Struct Multidiscip Optim 57(6):2127–2142

    Article  Google Scholar 

  • Hadigol M, Doostan A (2018) Least squares polynomial chaos expansion: a review of sampling strategies [J]. Comput Methods Appl Mech Eng 332:382–407

    Article  MathSciNet  MATH  Google Scholar 

  • Han Z-H, Görtz S (2012) Hierarchical kriging model for variable-fidelity surrogate modeling [J]. AIAA J 50(9):1885–1896

    Article  Google Scholar 

  • Han Z-H, Zimmermann R, Goretz S. A new cokriging method for variable-fidelity surrogate modeling of aerodynamic data [C]. Proceed 48th AIAA Aerospace Sci Meet Includ New Horizons Forum Aerospace Exposition, 2010: 1225

  • Jakeman JD, Franzelin F, Narayan A, Eldred M, Plfüger D (2019) Polynomial chaos expansions for dependent random variables [J]. Comput Methods Appl Mech Eng 351:643–666

    Article  MathSciNet  MATH  Google Scholar 

  • Jin R, Chen W, Sudjianto A (2002) On sequential sampling for global metamodeling in engineering design [C]. Proceed Design Autom Conf:539–548

  • Jones DR, Schonlau M, Welch WJ (1998) Efficient global optimization of expensive black-box functions [J]. J Glob Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Joseph VR, Hung Y, Sudjianto A (2008) Blind Kriging: a new method for developing metamodels [J]. J Mech Des 130(3):031102

    Article  Google Scholar 

  • Kennedy MC, O'Hagan A (2000) Predicting the output from a complex computer code when fast approximations are available [J]. Biometrika 87(1):1–13

    Article  MathSciNet  MATH  Google Scholar 

  • Kersaudy P, Sudret B, Varsier N, Picon O, Wiart J (2015) A new surrogate modeling technique combining Kriging and polynomial chaos expansions – application to uncertainty analysis in computational dosimetry [J]. J Comput Phys 286:103–117

    Article  MathSciNet  MATH  Google Scholar 

  • Kostinski AB, Koivunen AC (2000) On the condition number of Gaussian sample-covariance matrices [J]. IEEE Trans Geosci Remote Sens 38(1):329–332

    Article  Google Scholar 

  • Krige D G. A statistical approach to some basic mine valuation problems on the Witwatersrand [J]. J Chem, Metallurg, Mining Soc S Africa, 1951,

  • Ledoux ST, Vassberg JC, Young DP, Fugal S, Kamenetskiy D, Huffman WP, Melvin RG, Smith MF (2015) Study based on the AIAA aerodynamic design optimization discussion group test cases [J]. AIAA J 53(7):1–26

    Article  Google Scholar 

  • Liang H, Zhu M, Wu Z (2014) Using cross-validation to design trend function in Kriging surrogate modeling [J]. AIAA J 52(10):2313–2327

    Article  Google Scholar 

  • Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE: a MATLAB kriging toolbox [M]. Citeseer

  • Marrel A, Iooss B, Van Dorpe F, Volkova EJCS, Analysis D (2008) An efficient methodology for modeling complex computer codes with Gaussian processes [J]. Comput Stat Data Anal 52(10):4731–4744

    Article  MathSciNet  MATH  Google Scholar 

  • Martin JD, Simpson TW (2005) Use of kriging models to approximate deterministic computer models [J]. AIAA J 43(4):853–863

    Article  Google Scholar 

  • Matheron G (1963) Principles of geostatistics [J]. Econ Geol

  • Myers DE (1982) Matrix formulation of co-kriging [J]. J Int Assoc Math Geol 14(3):249–257

    Article  MathSciNet  Google Scholar 

  • Ng L W-T, Eldred M. Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation [C]. Proceedings of the 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA, 2012: 1852

  • Palar PS, Shimoyama K (2018) On efficient global optimization via universal Kriging surrogate models [J]. Struct Multidiscip Optim 57(6):2377–2397

    Article  MathSciNet  Google Scholar 

  • Palar PS, Tsuchiya T, Parks GT (2016) Multi-fidelity non-intrusive polynomial chaos based on regression [J]. Comput Method Appl Mech Eng 305(2016):579–606

    Article  MathSciNet  MATH  Google Scholar 

  • Peherstorfer B, Willcox K, Gunzburger M (2018) Survey of multifidelity methods in uncertainty propagation, inference, and optimization [J]. SIAM Rev 60(3):550–591

    Article  MathSciNet  MATH  Google Scholar 

  • Perkó Z, Gilli L, Lathouwers D, Kloosterman JL (2014) Grid and basis adaptive polynomial chaos techniques for sensitivity and uncertainty analysis [J]. J Comput Phys 260(3):54–84

    Article  MathSciNet  MATH  Google Scholar 

  • Queipo NV, Haftka RT, Shyy W, Goel T, Vaidyanathan R, Tucker PK (2005) Surrogate-based analysis and optimization [J]. Prog Aerosp Sci 41(1):1–28

    Article  Google Scholar 

  • Rahman S (2018) A polynomial chaos expansion in dependent random variables [J]. J Math Anal Appl 464(1):749–775

    Article  MathSciNet  MATH  Google Scholar 

  • Rockafellar RT (2005) Lagrange multipliers and optimality [J]. SIAM Rev

  • Rosenblatt M (1952) Remarks on a multivariate transformation [J]. Ann Math Stat 23(3):470–472

    Article  MathSciNet  MATH  Google Scholar 

  • Salehi S, Raisee M, Cervantes MJ, Nourbakhsh A (2018) An efficient multifidelity ℓ1-minimization method for sparse polynomial chaos [J]. Comput Methods Appl Mech Eng 334:183–207

    Article  MathSciNet  MATH  Google Scholar 

  • Santner TJ, Williams BJ, Notz W, Williams BJ (2003) The design and analysis of computer experiments [M]. Springer

  • Schobi R, Sudret B, Wiart J. Polynomial-chaos-based Kriging [J]. Int J Uncertain Quantif, 2015, 5(2):

  • Schöbi R, Sudret B, Marelli S (2016) Rare event estimation using polynomial-chaos kriging [J]. ASCE-ASME JRisk Uncertain Eng Syst Part A: Civil Eng 3(2):D4016002

    Article  Google Scholar 

  • Shao Q, Younes A, Fahs M, Mara TA (2017) Bayesian sparse polynomial chaos expansion for global sensitivity analysis [J]. Comput Methods Appl Mech Eng 318:474–496

    Article  MathSciNet  MATH  Google Scholar 

  • Shi Y, Mader CA, He S, Halila GLO, Martins JRRA (2020) Natural laminar-flow airfoil optimization design using a discrete adjoint approach [J]. AIAA J 58(11):4702–4722

    Article  Google Scholar 

  • Toal DJ (2015) Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models [J]. Struct Multidiscip Optim 51(6):1223–1245

    Article  Google Scholar 

  • Wang F, Xiong F, Chen S, Song J (2019) Multi-fidelity uncertainty propagation using polynomial chaos and Gaussian process modeling [J]. Struct Multidiscip Optim 60(4):1583–1604

    Article  Google Scholar 

  • Witteveen J A, Bijl H (2006) Modeling arbitrary uncertainties using Gram-Schmidt polynomial chaos [C]. Proceed 44th AIAA Aerospace Sci Meet Exhibit, 896

  • Xiu D, Em KG (2002) Modeling uncertainty in steady state diffusion problems via generalized polynomial chaos [J]. Comput Methods Appl Mech Eng 191(43):4927–4948

    Article  MathSciNet  MATH  Google Scholar 

  • Xiu D, Karniadakis GE (2003) Modeling uncertainty in flow simulations via generalized polynomial chaos [J]. J Comput Phys 187(1):137–167

    Article  MathSciNet  MATH  Google Scholar 

  • Xu S, Liu H, Wang X, Jiang X (2014) A robust error-pursuing sequential sampling approach for global metamodeling based on voronoi diagram and cross validation [J]. J Mech Des 136(7):071009

    Article  Google Scholar 

  • Yan L, Zhou T (2019) Adaptive multi-fidelity polynomial chaos approach to Bayesian inference in inverse problems [J]. J Comput Phys 381:110–128

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Yao W, Ye S, Chen X (2019) A regularization method for constructing trend function in Kriging model [J]. Struct Multidiscip Optim 59(4):1221–1239

    Article  Google Scholar 

  • Zhao L, Choi K, Lee I (2011) Metamodeling method using dynamic kriging for design optimization [J]. AIAA J 49(9):2034–2046

    Article  Google Scholar 

  • Zhao H, Gao Z, Gao Y, Wang C (2017) Effective robust design of high lift NLF airfoil under multi-parameter uncertainty [J]. Aerosp Sci Technol 68:530–542

    Article  Google Scholar 

  • Zhao H, Gao Z, Xu F, Zhang Y (2019a) Review of robust aerodynamic design optimization for air vehicles [J]. Arch Comput Methods Eng 26(3):685–732

    Article  MathSciNet  Google Scholar 

  • Zhao H, Gao Z, Xu F, Zhang Y, Huang J (2019b) An efficient adaptive forward–backward selection method for sparse polynomial chaos expansion [J]. Comput Methods Appl Mech Eng 355:456–491

    Article  MathSciNet  MATH  Google Scholar 

  • Zimmerman D, Pavlik C, Ruggles A, Armstrong MP (1999) An experimental comparison of ordinary and universal kriging and inverse distance weighting [J]. Math Geol 31(4):375–390

    Article  Google Scholar 

  • Zimmermann R (2015) On the condition number anomaly of Gaussian correlation matrices [J]. Linear Algebra Appl 466:512–526

    Article  MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was sponsored by the National Natural Science Foundation of China (NSFC) under grant No.10902088 and the Aeronautical Science Foundation of China (ASFC) under grant No. 2011ZA53008. These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

For replication of the results of all test examples, the main MATLAB codes have been uploaded as the supplementary material. The reader can change the response function and the input variables in the corresponding source codes to re-produce the results of all cases shown in the manuscript.

Additional information

Responsible editor: Tae Hee Lee

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• An efficient AMF-PCK metamodeling technique is proposed.

• A nested LOOCV-based LAR adaptive basis selection procedure for the optimal AMF-PCK is developed.

• An adaptive sequential sampling based on LOOCV-Voronoi-MSD approach is devised for MF metamodeling.

• Comprehensive comparisons among AMF-PCK, HK, UK, and LAR-PCK are made by multiple benchmark examples.

• The AMF-PCK for global approximation appreciably improves efficiency, accuracy, and reliability.

Supplementary information

ESM 1

(M 3 kb)

ESM 2

(M 162 bytes)

ESM 3

(M 2 kb)

ESM 4

(M 161 bytes)

ESM 5

(M 2 kb)

ESM 6

(M 584 bytes)

ESM 7

(M 542 bytes)

ESM 8

(M 1 kb)

ESM 9

(M 3 kb)

ESM 10

(M 3 kb)

ESM 11

(M 2 kb)

ESM 12

(SPC 301 bytes)

ESM 13

(M 8 kb)

ESM 14

(MEXW64 998 kb)

ESM 15

(M 6 kb)

ESM 16

(M 1 kb)

Appendices

Appendix 1: Adaptive multi-level multi-fidelity polynomial chaos-Kriging metamodeling

Essentially, there often exist multiple sets of data corresponding to multiple levels of fidelity data. For example, for aerodynamic analysis, an often-employed hierarchy comprises Reynolds averaged Navier-Stokes (RANS) equations with different grid levels, Euler equations, and potential theory. Similar hierarchies of models also exist in other fields of engineering. Therefore, the application of multiple levels of fidelity to assist the HF prediction of the same output quantity is expected to contribute to the reduction of computational cost significantly. Further, a multi-level AMF-PCK metamodel can be built by

(52)

where the function predictors \( \left\{{\hat{y}}_{l_0},{\hat{y}}_{l_1},{\hat{y}}_{l_2},\cdots, {\hat{y}}_{l_{\tau }}\right\} \) have the reduced (τ + 1) levels of fidelity and \( {\hat{y}}_{l_0} \) denotes the highest-fidelity predictor for the physical model (or the HF function) based on all the sample data, namely, \( {\hat{y}}_h \). The lowest-fidelity function predictor \( {\hat{y}}_{l_{\tau }} \) is the PCK model built using the lowest-fidelity sample set, namely,

$$ {\hat{y}}_{l_{\tau }}(X)=\sum \limits_{r_i\in A}{\beta}_{r_i}{\psi}_{r_i}(X)+{r}_{l_{\tau}}^{\mathrm{T}}{R}_{l_{\tau}}^{-1}\left({Y}_{l_{\tau }}-{\varPsi}_r{\beta}_r\right) $$
(53)

where A is the index set of the selected polynomials in \( {\hat{y}}_{l_{\tau }}\left(\boldsymbol{X}\right) \), as presented in Section 3.1. αi and Ci(X) denote the ith level scaling factor and the ith level adaptive correction polynomial expansion-Gaussian process term, respectively. \( {y}_{c_i}\left(\boldsymbol{X}\right) \) is the ith level correction polynomial expansion defined by

$$ {y}_{c_i}\left(\mathbf{X}\right)=\sum \limits_{c_{i,j}\in {A}_{c_i}}{\alpha}_{c_{i,j}}{\psi}_{c_{i,j}}\left(\mathbf{X}\right), $$
(54)

where \( {A}_{c_i} \) and \( {\alpha}_{c_{i,j}} \) are the index set of the ith level correction polynomial expansion and corresponding polynomial coefficient, respectively. Specifically, the index sets of polynomials for (52) should meet the condition of \( {A}_{c_0}\subseteq {A}_{c_1}\subseteq \cdots {A}_{c_{\tau -2}}\subseteq {A}_{c_{\tau -1}}\subseteq A \). The building procedures of \( {\hat{y}}_{l_i} \) of the ith level model, \( {y}_{c_i}\left(\boldsymbol{X}\right) \) of the ith level correction expansion, and \( {z}_{l_i}\left({\boldsymbol{X}}^{(i)}\right) \) of the ith level stationary Gaussian process are the same as those presented in Sections 3.1, 3.2, and 3.3. Subsequently, we can build the PC-Kriging model \( {\hat{y}}_{l_i} \) for the ith level with the lower-fidelity PCK \( {\hat{y}}_{l_{i+1}} \) serving as its model trend.

Next, an adaptive LOOCV-based multi-level AMF-PCK metamodeling procedure is applied when multiple levels of fidelity data are available. Figure 17 gives the sketch map of (τ + 1)-level AMF-PCK metamodeling using the proposed correction form.

Fig. 17
figure 17

The sketch map of (τ + 1)-level AMF-PCK correction procedure

  1. 1)

    Represent the response functions for the same output quantity corresponding to (τ + 1) levels of fidelity data as \( \left\{{y}_{l_0}\left(\boldsymbol{X}\right),{y}_{l_1}\left(\boldsymbol{X}\right),{y}_{l_2}\left(\boldsymbol{X}\right),\cdots, {y}_{l_{\tau }}\left(\boldsymbol{X}\right)\right\} \). Apply efficient DOE strategies to generate (τ + 1) sets of samples corresponding to (τ + 1) levels of fidelity functions, namely, \( {\boldsymbol{S}}_{l_k}={\left\{{\boldsymbol{X}}^{(i)}\right\}}_{i=1}^{N_{l_k}},k=0,1,2,\cdots, \tau \), (\( \mathrm{typically}\ {N}_{l_0}\ll {N}_{l_1}\ll \cdots \ll {N}_{l_{\tau }}\Big), \) where \( {N}_{l_j} \) represents the number of sample points for the jth level of fidelity data. Evaluate their responses stored in \( {\boldsymbol{Y}}_{l_k}={\left({y}_{l_k}\left({\boldsymbol{X}}^{(1)}\right),{y}_{l_k}\left({\boldsymbol{X}}^{(2)}\right),\cdots, {y}_{l_k}\left({\boldsymbol{X}}^{\left({N}_{l_k}\right)}\right)\right)}^{\mathrm{T}} \) (k = 0, 1, 2, ⋯, τ), respectively. Other initializations are similar with those presented in Section 3.4, e.g., error criterion ϵh, candidate polynomials set \( \left\{{\psi}_1\left(\boldsymbol{X}\right),{\psi}_2\left(\boldsymbol{X}\right),\cdots, {\psi}_{M_p}\left(\boldsymbol{X}\right)\right\} \).

  2. 2)

    Run the adaptive LAR algorithm using the lowest-fidelity sample set \( \left\{{\boldsymbol{S}}_{l_{\tau }},{\boldsymbol{Y}}_{l_{\tau }}\right\} \) to obtain a ranked basis set from the candidate polynomial bases, which are chosen depending on their correlation to the current residual at each iteration in decreasing order, i.e., \( \left\{{\psi}_{r_1}\left(\boldsymbol{X}\right),{\psi}_{r_2}\left(\boldsymbol{X}\right),\cdots, {\psi}_{r_{M_{l_{\tau }}}}\left(\boldsymbol{X}\right)\right\}, \) where \( {M}_{l_{\tau }}=\min \left({M}_p,{N}_{l_{\tau }}-1\right) \). The number of lowest-fidelity sample points is sufficient, but their evaluations are much cheaper compared to the computations of the same number of higher-fidelity sample points.

  3. 3)

    Build a series of the lowest-fidelity LAR-PCK metamodels \( \left\{{\hat{y}}_{l_{\tau}}^{\left({M}_{\tau}\right)}\left(\boldsymbol{X}\right)\right\} \) using the first Mτ PC term(s) from the ranked PC bases functions as the trend functions, i.e., \( \left\{{\psi}_{r_1}\left(\boldsymbol{X}\right),{\psi}_{r_2}\left(\boldsymbol{X}\right),\cdots, {\psi}_{r_{M_{\tau }}}\left(\boldsymbol{X}\right)\right\}\ \left({M}_{\tau }=1,2,3,\cdots, {M}_{l_{\tau }}\right) \), by utilizing the lowest-fidelity sample set \( \left\{{\boldsymbol{S}}_{l_{\tau }},{\boldsymbol{Y}}_{l_{\tau }}\right\} \). Each polynomial is added one by one to the trend functions.

  4. 4)

    For each lowest-fidelity PCK model \( {\hat{y}}_{l_{\tau}}^{\left({M}_{\tau}\right)}\left(\boldsymbol{X}\right) \), build a series of two-level AMF-PCK metamodels \( \left\{{\hat{y}}_{l_{\tau -1}}^{\left({M}_{\tau },{M}_{c_{\tau -1}}\right)}\left(\boldsymbol{X}\right)\right\} \) using the higher-fidelity sample set \( \left\{{\boldsymbol{S}}_{l_{\tau -1}},{\boldsymbol{Y}}_{l_{\tau -1}}\right\} \) with increasing cardinality \( {M}_{c_{\tau -1}} \) of the correction expansion \( {y}_{c_{\tau -1}}^{\left({M}_{c_{\tau -1}}\right)}\left(\boldsymbol{X}\right) \), as given by (52), where PC basis set in the correction expansion \( {y}_{c_{\tau -1}}^{\left({M}_{c_{\tau -1}}\right)}\left(\boldsymbol{X}\right) \) as \( \left\{{\psi}_{r_1}\left(\boldsymbol{X}\right),{\psi}_{r_2}\left(\boldsymbol{X}\right),\cdots, {\psi}_{r_{M_{c_{\tau -1}}}}\left(\boldsymbol{X}\right)\right\} \) \( \left({M}_{c_{\tau -1}}=1,2,3,\cdots, \min \left({M}_{\tau },{N}_{l_{\tau -1}}\right)\right) \). The fitting procedure of two-level AMF-PCK model is the same as that presented in Section 3.3.

  5. 5)

    Proceed the modeling process until τ levels of lower-fidelity data are utilized. For each (τ − 1)-level AMF-PCK metamodel \( {\hat{y}}_{l_2}^{\left({M}_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_2}\right)}\left(\boldsymbol{X}\right) \), build a series of τ-level AMF-PCK metamodels \( \left\{{\hat{y}}_{l_1}^{\left({M}_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_1}\right)}\left(\boldsymbol{X}\right)\right\} \) using the higher-fidelity sample set \( \left\{{\boldsymbol{S}}_{l_1},{\boldsymbol{Y}}_{l_1}\right\} \) with increasing cardinality \( {M}_{c_1} \) of the correction expansion \( {y}_{c_1}^{\left({M}_{c_1}\right)}\left(\boldsymbol{X}\right) \), where PC basis set in the correction expansion \( {y}_{c_1}^{\left({M}_{c_1}\right)}\left(\boldsymbol{X}\right) \) as \( \left\{{\psi}_{r_1}\left(\boldsymbol{X}\right),{\psi}_{r_2}\left(\boldsymbol{X}\right),\cdots, {\psi}_{r_{M_{c_1}}}\left(\boldsymbol{X}\right)\right\} \) \( \left({M}_{c_1}=1,2,3,\cdots, \min \left({M}_{c_2},{N}_{l_1}\right)\right) \). The fitting procedure of the τ-level AMF-PCK model is similar with that presented in Section 3.3, though it utilizes the (τ − 1)-level AMF-PCK metamodel as the low-fidelity model.

  6. 6)

    For \( i=1,2,\kern0.5em \cdots, {N}_{l_0} \):

  1. a)

    For each τ-level AMF-PCK model \( {\hat{y}}_{l_1}^{\left({M}_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_1}\right)}\left(\boldsymbol{X}\right) \) using the sample set \( \left\{{\boldsymbol{S}}_{l_0},{\boldsymbol{Y}}_{l_0}\right\}\backslash \left\{{\boldsymbol{X}}^{(i)},{y}_{l_0}\left({\boldsymbol{X}}^{(i)}\right)\right\} \), build a series of (τ + 1)-level AMF-PCK metamodels \( \left\{{\hat{y}}_{l_0^{\left(-i\right)}}^{\left({M}_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}\right)}\left(\boldsymbol{X}\right)\right\} \) with increasing cardinality \( {M}_{c_0} \) of the correction expansion \( {y}_{c_0}^{\left({M}_{c_0}\right)}\left(\boldsymbol{X}\right) \), where PC basis set in the correction expansion \( {y}_{c_0}^{\left({M}_{c_0}\right)}\left(\boldsymbol{X}\right) \) as \( \left\{{\psi}_{r_1}\left(\boldsymbol{X}\right),{\psi}_{r_2}\left(\boldsymbol{X}\right),\cdots, {\psi}_{r_{M_{c_0}}}\left(\boldsymbol{X}\right)\right\} \) \( \left({M}_{c_0}=1,2,\cdots, \min \left({M}_{c_1},{N}_{l_0}\right)\right) \). The cardinality of the correction expansions should satisfy \( {M}_{c_0}\le {M}_{c_1}\le \cdots \le {M}_{c_{\tau -1}}\le {M}_{\tau}\le {M}_{l_{\tau }} \).

  2. b)

    Calculate the prediction residual \( {\delta}_{M_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}}^{(i)} \) at high-fidelity point X(i) by each (τ + 1)-level AMF-PCK model \( {\hat{y}}_{l_0^{\left(-i\right)}}^{\left({M}_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}\right)}\left(\boldsymbol{X}\right) \), where \( {\delta}_{M_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}}^{(i)}={\hat{y}}_{l_0^{\left(-i\right)}}^{\left({M}_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}\right)}\left({\boldsymbol{X}}^{(i)}\right)-{y}_{l_0}\left({\boldsymbol{X}}^{(i)}\right) \).

  1. 7)

    Calculate the LOOCV error \( {\varepsilon}_{M_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}}={Err_{LOO}}_{M_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}} \) of each (τ + 1)-level AMF-PCK metamodel, where \( {Err_{LOO}}_{M_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}}={\sum}_{i=1}^{N_{l_0}}{\left({\delta}_{M_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}}^{(i)}\right)}^2/{N}_{l_0} \). Find \( {\varepsilon}^{\ast }={\varepsilon}_{M_{\tau}^{\ast },{M}_{c_{\tau -1}}^{\ast },\cdots, {M}_{c_0}^{\ast }}=\min \left\{{\varepsilon}_{M_{\tau },{M}_{c_{\tau -1}},\cdots, {M}_{c_0}}\right\} \), (\( {M}_{\tau }=1,2,\cdots, {M}_{l_{\tau }};{M}_{c_{\tau -1}}=1,2,\cdots, \min \left({M}_{\tau },{N}_{l_{\tau -1}}\right);\cdots; {M}_{c_0}=1,2,\cdots, \min \left({M}_{c_1},{N}_{l_0}\right) \)), as well as the corresponding number \( {M}_{\tau}^{\ast } \) of the LF PC bases and the corresponding cardinalities \( {M}_{c_{\tau -1}}^{\ast },\cdots, \) \( {M}_{c_1}^{\ast } \)and \( {M}_{c_0}^{\ast } \) of the correction expansion sets. Then, the optimal (τ + 1)-level AMF-PCK metamodel \( {\hat{\mathrm{y}}}_{l_0}^{\left({M}_{\tau}^{\ast },{M}_{c_{\tau -1}}^{\ast },\cdots, {M}_{c_0}^{\ast}\right)}\left(\boldsymbol{X}\right)\ \left(\mathrm{or}\ {\hat{\mathrm{y}}}_h^{\left({M}_{\tau}^{\ast },{M}_{c_{\tau -1}}^{\ast },\cdots, {M}_{c_0}^{\ast}\right)}\left(\boldsymbol{X}\right)\right) \) can be built, with the optimal PC basis set \( \left\{{\psi}_{r_1}\left(\mathbf{X}\right),{\psi}_{r_2}\left(\mathbf{X}\right),\cdots, {\psi}_{r_{M_{\tau}^{\ast }}}\left(\mathbf{X}\right)\right\} \) in the LF PCK \( {\hat{y}}_{l_{\tau}}^{\left({M}_{\tau}^{\ast}\right)}\left(\mathbf{X}\right) \) and the corresponding optimal correction expansion sets \( \left\{{\psi}_{r_1}\left(\mathbf{X}\right),{\psi}_{r_2}\left(\mathbf{X}\right),\cdots, {\psi}_{r_{M_{c_{\tau -1}}^{\ast }}}\left(\mathbf{X}\right)\right\} \),⋯, \( \left\{{\psi}_{r_1}\left(\mathbf{X}\right),{\psi}_{r_2}\left(\mathbf{X}\right),\cdots, {\psi}_{r_{M_{c_1}^{\ast }}}\left(\mathbf{X}\right)\right\}, \) \( \left\{{\psi}_{r_1}\left(\mathbf{X}\right),{\psi}_{r_2}\left(\mathbf{X}\right),\cdots, {\psi}_{r_{M_{c_0}^{\ast }}}\left(\mathbf{X}\right)\right\} \) in \( {y}_{C_{\tau -1}}^{\left({M}_{c_{\tau -1}}^{\ast}\right)}\left(\mathbf{X}\right),\cdots, {y}_{c_1}^{\left({M}_{c_1}^{\ast}\right)}\left(\mathbf{X}\right),{y}_{c_0}^{\left({M}_{c_0}^{\ast}\right)}\left(\mathbf{X}\right) \), respectively.

  2. 8)

    If ε is larger than the target error ϵh, the user can enrich the different levels of fidelity sample sets by (multi-fidelity) sequential sampling strategies, and repeat steps 2–7 until the error criterion is satisfied. Build the optimal (τ + 1)-level AMF-PCK metamodel using the selected PC basis sets and all (τ + 1)-level fidelity of data.

Appendix 2: Nomenclature

ψi, βi, p, Mp:

Polynomial basis, polynomial coefficient, polynomial order, and truncated polynomial terms

Ψ :

Polynomial measurement matrix

\( {y}_l,\kern0.5em {y}_h,\kern0.5em {\hat{y}}_l,\kern0.5em {\hat{y}}_h \) :

Low- and high-fidelity function responses, low-and high-fidelity predictions

\( {\psi}_{c_i},\kern0.5em {\alpha}_{c_i} \) :

PC basis in correction expansion and corresponding coefficient

α 0 :

Scaling factor for low-fidelity model

Sl, Sh, Yl, Yh, Nl, Nh:

Low- and high-fidelity sample sets and their responses sets and corresponding sample sizes

A, Ac, M, Mc:

Index sets of selected LF PCE and correction PCE and corresponding cardinalities

C(X):

Additive correction term

\( {z}_l,{z}_h,{\hat{\sigma}}_{z_l}^2,{\hat{\sigma}}_{z_h}^2 \) :

Gaussian random process and corresponding stationary process variance

Rl, Rh, R, θl, θh:

Correlation matrix, autocorrelation function, and corresponding hyper-parameters of R

rl, rh:

Correlation vectors

Ma, Re, AoA :

Freestream Mach number, Reynolds number based on airfoil chord, and angle of attack

Cl, Cd, Cm:

Lift, drag, and pitching moment coefficients

Appendix 3: Highlights

  • An efficient AMF-PCK metamodeling technique is proposed.

  • A nested LOOCV-based LAR adaptive basis-selection procedure for the optimal AMF-PCK is developed.

  • An adaptive sequential sampling based on LOOCV-Voronoi-MSD approach is devised for MF metamodeling.

  • Comprehensive comparisons among AMF-PCK, HK, UK, and LAR-PCK are made by multiple benchmark examples.

  • The AMF-PCK for global approximation appreciably improves efficiency, accuracy, and reliability.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Gao, Z., Xu, F. et al. Adaptive multi-fidelity sparse polynomial chaos-Kriging metamodeling for global approximation of aerodynamic data. Struct Multidisc Optim 64, 829–858 (2021). https://doi.org/10.1007/s00158-021-02895-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02895-2

Keywords

Navigation