Skip to main content

Advertisement

Log in

Mechanical behavior of composite bistable shell structure and surrogate-based optimal design

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A challenge in designing a bistable structure is the need to have low energy input for state change while maximizing the load-carrying capability. Here, we present an optimization framework for a bistable structure such that the maximum load-bearing ability can be achieved based on the investigation on mechanical performance and surrogate models. Firstly, an analytical expression of radius for the second state of the bistable structure is derived and verified by numerical simulation using a two-point loading method. Then, the transforming process of a bistable structure is analyzed by the force-displacement curve, and the transformed load is identified as an indicator measuring the load-bearing capacity. Secondly, the influence of changing parameters, including length, ply angle, thickness, and radius of the bistable shell structure on the transformed load is carried out systematically to choose optimal design variables. Thirdly, the optimal model is established, targeting the transformed load with the constraint of coupling stress in the second stable state. Model selection is conducted to determine the surrogate model that maps design variables into objective and constraint functions. And then, the improved genetic algorithm is developed to solve the optimal model, and optimal results are analyzed and discussed. Ultimately, we achieve an optimal bistable structure with the maximum load-bearing capacity while satisfying constraint, which is validated by numerical simulation. These computational and optimal strategies can provide design ideas for new structural optimization design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Box GEP, Wilson KB (1951) On the experimental attainment of optimum conditions. J R Stat Soc Ser B Methodol 13(1):1–38

    MathSciNet  MATH  Google Scholar 

  • Cantera MA, Romera JM, Adarraga I, Mujika F (2015) Modelling and testing of the snap-through process of bi-stable cross-ply composites. Compos Struct 120:41–52

    Article  Google Scholar 

  • Chen T, Shea K (2018) An autonomous programmable actuator and shape reconfigurable structures using bistability and shape memory polymers. 3D Print Addit Manuf 5(2):91–101

    Article  Google Scholar 

  • Chen T, Bilal OR, Shea K, Daraio C (2018) Harnessing bistability for directional propulsion of soft, untethered robots. Proc Natl Acad Sci 115(22):5698–5702

    Article  Google Scholar 

  • Chillara VSC, Dapino MJ (2017) Mechanically-prestressed bistable composite laminates with weakly coupled equilibrium shapes. Compos Part B 111:251–260

    Article  Google Scholar 

  • Cui Y, Santer M (2016) Characterisation of tessellated bistable composite laminates. Compos Struct 137:93–104

    Article  Google Scholar 

  • Daynes S, Trask RS, Weaver PM (2014) Bio-inspired structural bistability employing elastomeric origami for morphing applications. Smart Mater Struct 23(12):125011

    Article  Google Scholar 

  • Diaconu CG, Weaver PM, Mattioni F (2008) Concepts for morphing airfoil sections using bi-stable laminated composite structures. Thin-Walled Struct 46(6):689–701

    Article  Google Scholar 

  • Emam SA, Inman DJ (2015) A review on bistable composite laminates for morphing and energy harvesting. Appl Mech Rev 67(6):060803

    Article  Google Scholar 

  • Fang H, Horstemeyer MF (2006) Global response approximation with radial basis functions. Eng Optim 38(04):407–424

    Article  MathSciNet  Google Scholar 

  • Forterre Y, Skotheim JM, Dumais J, Mahadevan L (2005) How the Venus flytrap snaps. Nature 433(7024):421–425

    Article  Google Scholar 

  • Galletly DA, Guest SD (2004a) Bistable composite slit tubes. I. A beam model. Int J Solids Struct 41(16–17):4517–4533

    Article  MATH  Google Scholar 

  • Galletly DA, Guest SD (2004b) Bistable composite slit tubes. II. A shell model. Int J Solids Struct 41(16–17):4503–4516

    Article  MATH  Google Scholar 

  • Guest SD, Pellegrino S (2006) Analytical models for bistable cylindrical shells. Proc R Soc London A 462(2067):839–854

    MathSciNet  MATH  Google Scholar 

  • Hanna BH, Lund JM, Lang RJ, Magleby SP, Howell LL (2014) Waterbomb base: a symmetric single-vertex bistable origami mechanism. Smart Mater Struct 23(9):094009

    Article  Google Scholar 

  • Hernandez EAP, Kiefer B, Hartl DJ, Menzel A, Lagoudas DC (2015) Analytical investigation of structurally stable configurations in shape memory alloy-actuated plates. Int J Solids Struct 69-70(10):442–458

    Article  Google Scholar 

  • Howell LL (2001) Compliant mechanisms. John Wiley and Sons, Hoboken

    Google Scholar 

  • Hufenbach W, Gude M, Kroll L (2002) Design of multistable composites for application in adaptive structures. Compos Sci Technol 62(16):2201–2207

    Article  Google Scholar 

  • Husain A, Kim KY (2010) Enhanced multi-objective optimization of a microchannel heat sink through evolutionary algorithm coupled with multiple surrogate models. Appl Therm Eng 30(13):1683–1691

    Article  Google Scholar 

  • Hyer MW (1981) Some observations on the cured shapes of thin unsymmetric laminates. J Compos Mater 15(2):175–194

    Article  Google Scholar 

  • Hyer MW (1982) The room-temperature shapes of four-layer unsymmetric cross-ply laminates. J Compos Mater 16(4):318–340

    Article  Google Scholar 

  • Hyer MW, Bhavani PC (1984) Suppression of anticlastic curvature in isotropic and composite plates. Int J Solids Struct 20(6):553–570

    Article  MATH  Google Scholar 

  • Iqbal K, Pellegrino S (2000a) Bi-stable composite shells. 41st AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics and materials conference and exhibit. Atlanta, GA, 3–6 April. AIAA 2000–1385

  • Iqbal K, Pellegrino (2000b) Bi-stable composite slit tubes. IUTAM-IASS symposium on deployable structures: theory and applications. Solid mechanics and its applications 80:153–162

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  • Kamrava S, Mousanezhad D, Ebrahimi H, Ghosh R, Vaziri A (2017) Origami-based cellular metamaterial with auxetic, bistable, and self-locking properties. Sci Rep 7:46046

    Article  Google Scholar 

  • Kebadze E, Guest SD, Pellegrino S (2004) Bistable prestressed shell structures. Int J Solids Struct 41(11–12):2801–2820

    Article  MATH  Google Scholar 

  • Kim SW, Koh JS, Lee JG, Ryu J, Cho M, Cho KJ (2014) Flytrap-inspired robot using structurally integrated actuation based on bistability and a developable surface. Bioinspir Biomim 9(3):036004

    Article  Google Scholar 

  • Lee AJ, Moosavian A, Inman DJ (2017) Control and characterization of a bistable laminate generated with piezoelectricity. Smart Mater Struct 26(8):085007

    Article  Google Scholar 

  • Liu Y, Zeng W, Wan G, Dong L, Xu Z, Zhang JX, Chen Z (2019) Voltage-actuated snap-through in bistable piezoelectric thin films: a computational study. Smart Mater Struct 28:085021

    Article  Google Scholar 

  • Loukaides EG, Smoukov SK, Seffen KA (2014) Magnetic actuation and transition shapes of a bistable spherical cap. Int J Smart Nano Mater 5(4):270–282

    Article  Google Scholar 

  • Mansfield EH (1989) The bending and stretching of plates, second edn. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • McDonald DB, Grantham WJ, Tabor WL, Murphy MJ (2007) Global and local optimization using radial basis function response surface models. Appl Math Model 31(10):2095–2110

    Article  MATH  Google Scholar 

  • Pirrera A, Avitabile D, Weaver PM (2010) Bistable plates for morphing structures: a refined analytical approach with high-order polynomials. Int J Solids Struct 47(25–26):3412–3425

    Article  MATH  Google Scholar 

  • Riley KS, Le Ferrand H, Arrieta AF (2018) Modeling of snapping composite shells with magnetically aligned bio-inspired reinforcements. Smart Mater Struct 27(11):114003

    Article  Google Scholar 

  • Schultz MR, Hyer MW (2003) Snap-through of unsymmetric cross-ply laminates using piezoceramic actuators. J Intell Mater Syst Struct 14(12):795–814

    Article  Google Scholar 

  • Shao H, Wei S, Jiang X, Holmes DP, Ghosh TK (2018) Bioinspired electrically activated soft bistable actuators. Adv Funct Mater 28(35):1802999

    Article  Google Scholar 

  • Silverberg JL, Na JH, Evans AA, Liu B, Hull TC, Santangelo CD, Lang RJ, Hayward RC, Cohen I (2015) Origami structures with a critical transition to bistability arising from hidden degrees of freedom. Nat Mater 14(4):389

    Article  Google Scholar 

  • Udani JP, Arrieta AF (2019) Analytical modeling of multi-sectioned bi-stable composites: stiffness variability and embeddability. Compos Struct 216:228–239

    Article  Google Scholar 

  • Wang B, Fancey KS (2015) A bistable morphing composite using viscoelastically generated prestress. Mater Lett 158:108–110

    Article  Google Scholar 

  • Wang B, Ge C, Fancey KS (2017) Snap-through behaviour of a bistable structure based on viscoelastically generated prestress. Compos Part B 114:23–33

    Article  Google Scholar 

  • Whitley D (1994) A genetic algorithm tutorial. Stat Comput 4(2):65–85

    Article  Google Scholar 

  • Wu HL, Zhang Z, Bao YM, Wu HP (2012) A novel experimental method and its numerical simulation for the bi-stable anti-symmetric composite shell. Adv Mater Res 562-564:439–442

    Article  Google Scholar 

  • Yang XS (2010) Nature-inspired metaheuristic algorithms. Luniver press, UK

    Google Scholar 

  • Yang H, Liu R, Wang Y, Deng Z, Guo H (2015) Experiment and multiobjective optimization design of tape-spring hinges. Struct Multidiscip Optim 51(6):1373–1384

    Article  Google Scholar 

  • Yang Y, Dias MA, Holmes DP (2018) Multistable kirigami for tunable architected materials. Phys Rev Mater 2(11):110601

    Article  Google Scholar 

  • Yang H, Liu L, Guo HW, Lu F, Liu Y (2019a) Wrapping dynamic analysis and optimization of deployable composite triangular rollable and collapsible booms. Struct Multidiscip Optim 59(4):1371–1383

    Article  Google Scholar 

  • Yang H, Lu F, Guo HW, Liu R (2019b) Design of a new N-shape composite ultra-thin deployable boom in the post-buckling range using response surface method and optimization. IEEE Access 7:129659–129665

    Article  Google Scholar 

  • Ye HL, Zhang Y, Yang QS, Xiao YN, Grandhi RV, Fischer CC (2017) Optimal design of a tree tape-spring hinge deployable space structure using an experimentally validated physics-based model. Struct Multidiscip Optim 56(5):973–989

    Article  Google Scholar 

  • Ye HL, Zhang Y, Yang QS, Zhang B (2019) Quasi-static analysis and multi-objective optimization for tape spring hinge. Struct Multidiscip Optim 60(6):2417–2430

    Article  Google Scholar 

  • Yi SH, He XQ, Lu J (2018a) Bistable metallic materials produced by nanocrystallization process. Mater Des 141:374–383

    Article  Google Scholar 

  • Yi SH, He XQ, Lu J (2018b) Investigation on snapping transitions of locally nanostructured bistable disks actuated by distributed transverse forces. Mech Mater 127:91–99

    Article  Google Scholar 

  • Zhang Z, Wu H, He X, Wu H, Bao Y, Chai G (2013) The bistable behaviors of carbon-fiber/epoxy anti-symmetric composite shells. Compos Part B 47:190–199

    Article  Google Scholar 

  • Zhang Z, Wu H, Ye G, Wu H, He X, Chai G (2014) Systematic experimental and numerical study of bistable snap processes for anti-symmetric cylindrical shells. Compos Struct 112(5):368–377

    Article  Google Scholar 

  • Zhang Z, Chen D, Wu H, Bao Y, Chai G (2016) Non-contact magnetic driving bioinspired Venus flytrap robot based on bistable anti-symmetric CFRP structure. Compos Struct 135:17–22

    Article  Google Scholar 

  • Zhang Z, Ye G, Wu H, Yang J, Kitipornchai S, Chai G (2017) Bistable behaviour and microstructure characterization of carbon fiber/epoxy resin anti-symmetric laminated cylindrical shell after thermal exposure. Compos Sci Technol 138:91–97

    Article  Google Scholar 

  • Zhang Z, Ma W, Wu H, Wu H, Jiang S, Chai G (2018) A rigid thick Miura-Ori structure driven by bistable carbon fibre-reinforced polymer cylindrical shell. Compos Sci Technol 167:411–420

    Article  Google Scholar 

  • Zhang Z, Li Y, Yu X, Li X, Wu H, Wu H, Jiang S, Chai G (2019) Bistable morphing composite structures: a review. Thin-Walled Struct 142:74–97

    Article  Google Scholar 

  • Zhou X, Wang H, You Z (2014) Mechanical properties of Miura-based folded cores under quasi-static loads. Thin-Walled Struct 82:296–310

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (11872080, 11172013), Beijing Natural Science Foundation (3192005), and Beijing Education Committee Development Project (SQKM201610005001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongling Ye.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Replication of results

All original data are included in this manuscript and the obtained results can be replicated. No additional data and code are appended.

Additional information

Responsible Editor: Yoojeong Noh

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Combined with the Gaussian function form in Table 3 with the training points in Table 2, the final form of the RBF-GS model can be obtained by solving (27)

$$ y(x)={\beta}_1{\mathrm{e}}^{\delta_1}+{\beta}_2{\mathrm{e}}^{\delta_2}+\dots +{\beta}_{27}{\mathrm{e}}^{\delta_{27}}+{b}_1{x}_1+{b}_2{x}_2+{b}_3{x}_3+{b}_0 $$
(A.1)

where

$$ {\displaystyle \begin{array}{c}{\delta}_1=-c\cdot \left[{\left({x}_1-{x}_{1,1}\right)}^2+{\left({x}_2-{x}_{1,2}\right)}^2+{\left({x}_3-{x}_{1,3}\right)}^2\right]\\ {}{\delta}_2=-c\cdot \left[{\left({x}_1-{x}_{2,1}\right)}^2+{\left({x}_2-{x}_{2,2}\right)}^2+{\left({x}_3-{x}_{2,3}\right)}^2\right]\\ {}\dots \\ {}{\delta}_{27}=-c\cdot \left[{\left({x}_1-{x}_{27,1}\right)}^2+{\left({x}_2-{x}_{27,2}\right)}^2+{\left({x}_3-{x}_{27,3}\right)}^2\right]\end{array}} $$
(A.2)

In this paper, c = 0.1. To make the paper clear, the coefficients in the above equation are attached in (A.3)–(A.6), respectively. Equations (A.3) and (A.4) represent the coefficients of the transformation load surrogate model, and (A.5) and (A.6) represent the coefficients of the maximum stress surrogate model.

Coefficients for the transformed load based on the RBF surrogate

$$ {\displaystyle \begin{array}{c}{\beta}_1=\Big[-0.08428,-\mathrm{15.3732,21.53591,11.74099},-13.2439,-\mathrm{9.72584,27.91396},-13.9384,\\ {}-25.3099,-6.51935,-\mathrm{5.30406,24.87283,6.155949},-\mathrm{8.63679,16.72813,21.83662},\\ {}-11.8259,-4.33821,-19.19,-\mathrm{18.4646,24.97922},-2.32732,-11.322,-2.27434,\\ {}13.97777,-\mathrm{8.89994,7.03655}\Big]\end{array}} $$
(A.3)
$$ {\mathbf{b}}_1=\left[0.689,\hbox{-} 6.7881,409.4371,\hbox{-} 103.49\right] $$
(A.4)

Coefficients for stress based on the RBF surrogate

$$ {\displaystyle \begin{array}{c}{\beta}_2=\Big[-33.57546,-0.93675,61.30411,-10.68648,-10.64946,-10.51601,40.56486,8.29826,\\ {}-31.30918,-26.10064,-3.37793,34.27713,-9.64921,-22.88281,-19.31415,36.17696,\\ {}\kern2em 4.58034,-18.69747,-21.40298,4.14278,45.98579,-2.6352,-13.50283,-20.79594,\\ {}\kern2em 41.86723,5.21025,-26.37521\Big]\end{array}} $$
(A.5)
$$ {\mathbf{b}}_2=\left[\hbox{-} 0.2457,\hbox{-} 27.7752,835.0198,637.3893\right] $$
(A.6)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Ye, H., Li, B. et al. Mechanical behavior of composite bistable shell structure and surrogate-based optimal design. Struct Multidisc Optim 64, 303–320 (2021). https://doi.org/10.1007/s00158-021-02890-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-02890-7

Keywords

Navigation