Skip to main content
Log in

A generative design method for structural topology optimization via transformable triangular mesh (TTM) algorithm

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This article presents a way of optimizing the conduction topology for heat-generating structures by means of transformable triangular mesh (TTM) algorithm which is implemented in an explicit and geometrical way. Unlike the traditional optimization approaches, the proposed method capitalizes on the use of a special morphing algorithm to generate optimal topologies from a genus zero surface. In this method, the initial geometry is firstly converted into triangular mesh and stored as a half-edge data structure. Then, the mesh operations (i.e., subdivision, split, and refinement) are employed to activate the geometry to move, split, and deform upon the underlying finite element mesh so that the conduction topology can be achieved by optimizing the positions and orientations of the triangular grids. The unique feature of the mesh operation is the split, which makes the geometries have different number of faces, edges, vertices as the initial one, and therefore different genus number between these geometries. This method renders the optimization process more flexibility. Finally, some examples with verification results are presented to demonstrate that TTM algorithm is capable of proposing solutions having almost the same cooling effectiveness with less computing resources compared with the commonly used density approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  • Aage N, Andreassen E, Lazarov BS et al (2017) Giga-voxel computational morphogenesis for structural design[J]. Nature 550(7674):84

    Article  Google Scholar 

  • Alexa M, Cohen-Or D, Levin D (2000) As-rigid-as-possible shape interpolation[C]//Proceedings of the 27th annual conference on Computer graphics and interactive techniques. ACM Press/Addison-Wesley Publishing Co., 157–164

  • Areias P, Reinoso J, Camanho PP et al (2018) Effective 2D and 3D crack propagation with local mesh refinement and the screened Poisson equation[J]. Eng Fract Mech 189:339–360

    Article  Google Scholar 

  • August A, Ettrich J, Rölle M et al (2015) Prediction of heat conduction in open-cell foams via the diffuse interface representation of the phase-field method[J]. Int J Heat Mass Transf 84:800–808

    Article  Google Scholar 

  • Baek SY, Lim J, Lee K (2015) Isometric shape interpolation[J]. Comput Graph 46:257–263

    Article  Google Scholar 

  • Beier T, Neely S (1992) Feature-based image metamorphosis [C]//ACM SIGGRAPH computer graphics. ACM 26(2):35–42

    Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method[J]. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications[M]. Springer Science & Business Media

  • Botsch M, Kobbelt L, Pauly M et al (2010) Polygon mesh processing[M]. AK Peters/CRC Press

  • Campagna S, Kobbelt L, Seidel HP (1998) Directed edges—a scalable representation for triangle meshes[J]. J Graph tools 3(4):1–11

    Article  Google Scholar 

  • Chan CP, Bachan JD, Kenny JP et al (2016) Topology-aware performance optimization and modeling of adaptive mesh refinement codes for exascale[C]//proceedings of the first workshop on optimization of communication in HPC. IEEE Press:17–28

  • Elguedj T, Jan Y, Combescure A et al (2018) X-FEM analysis of dynamic crack growth under transient loading in thick shells[J]. Int J Impact Eng 122:228–250

    Article  Google Scholar 

  • de Faria JR, Lesnic D (2015) Topological derivative for the inverse conductivity problem: a bayesian approach[J]. J Sci Comput 63(1):256–278

    Article  MathSciNet  MATH  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically—a new moving morphable components based framework[J]. J Appl Mech 81(8):081009

    Article  Google Scholar 

  • Huang X, Xie YM (2008) A new look at ESO and BESO optimization methods[J]. Struct Multidiscip Optim 35(1):89–92

    Article  Google Scholar 

  • Igarashi T, Moscovich T, Hughes JF (2005) As-rigid-as-possible shape manipulation[C]//ACM transactions on graphics (TOG). ACM 24(3):1134–1141

    Google Scholar 

  • Jacobson A, Baran I, Popovic J et al (2011) Bounded biharmonic weights for real-time deformation[J]. ACM Trans Graph 30(4):78:1–78:8

    Article  Google Scholar 

  • Kovacs D, Bisceglio J, Zorin D (2015) Dyadic T-mesh subdivision[J]. ACM Transactions on Graphics (TOG) 34(4):143

    Article  MATH  Google Scholar 

  • Levi Z, Gotsman C (2014) Smooth rotation enhanced as-rigid-as-possible mesh animation[J]. IEEE Trans Vis Comput Graph 21(2):264–277

    Article  Google Scholar 

  • Li X, Iyengar SS (2015) On computing mapping of 3d objects: a survey[J]. ACM Computing Surveys (CSUR) 47(2):34

    Article  Google Scholar 

  • Li BT, Huang CJ, Li X, Zheng S, Hong J (2019a) Non-iterative structural topology optimization using deep learning. Comput Aided Des 115:172–180

    Article  Google Scholar 

  • Li BT, Xuan CB, Liu GG, Hong J (2019b) Generating constructal networks for area-to-point (AP) conduction problems via moving morphable components (MMC) approach. Journal of Mechanical Design-Transactions of the ASME 141(5):051401–051416

    Article  Google Scholar 

  • Li BT, Yin XX, Tang WH, Zhang JH (2020) Optimization design of grooved evaporator wick structures in vapor chamber heat spreaders[J]. Appl Therm Eng 166:114657

    Article  Google Scholar 

  • Lian H, Christiansen AN, Tortorelli DA et al (2017) Combined shape and topology optimization for minimization of maximal von Mises stress[J]. Struct Multidiscip Optim 55(5):1541–1557

    Article  MathSciNet  Google Scholar 

  • Luo Z, Wang MY, Wang S et al (2008) A level set-based parameterization method for structural shape and topology optimization[J]. Int J Numer Methods Eng 76(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  • Martínez JM (2005) A note on the theoretical convergence properties of the SIMP method[J]. Struct Multidiscip Optim 29(4):319–323

    Article  MathSciNet  MATH  Google Scholar 

  • Mei Y, Wang X, Cheng G (2008) A feature-based topological optimization for structure design[J]. Adv Eng Softw 39(2):71–87

    Article  Google Scholar 

  • Norato JA, Bell BK, Tortorelli DA (2015) A geometry projection method for continuum-based topology optimization with discrete elements[J]. Comput Methods Appl Mech Eng 293:306–327

    Article  MathSciNet  MATH  Google Scholar 

  • Oswald P, Schröder P (2003) Composite primal/dual 3-subdivision schemes[J]. Comput Aided Geom Des 20(3):135–164

    Article  MathSciNet  MATH  Google Scholar 

  • Patterson MA, Hager WW, Rao AV (2015) A ph mesh refinement method for optimal control[J]. Optim Contr Appl Met 36(4):398–421

    Article  MathSciNet  MATH  Google Scholar 

  • Puri S, Prasad SK (2015) A parallel algorithm for clipping polygons with improved bounds and a distributed overlay processing system using mpi[C]//2015 15th IEEE/ACM international symposium on cluster, cloud and grid computing. IEEE:576–585

  • Rossignac J (1999) Edgebreaker: connectivity compression for triangle meshes[J]. IEEE Trans Vis Comput Graph 5(1):47–61

    Article  MathSciNet  Google Scholar 

  • Rozvany GIN, Bendsee MP (1995) Addendum-layout optimization of structures[J]. Appl Mech Rev 48(2):41–119

    Article  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization[J]. Acta Mech Sinica 02:83–95

    MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization[J]. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Wang S, Wang MY (2006) Radial basis functions and level set method for structural topology optimization[J]. Int J Numer Methods Eng 65(12):2060–2090

    Article  MathSciNet  MATH  Google Scholar 

  • Wang Y, Wang L, Deng Z et al (2017) Topologically consistent leafy tree morphing[J]. Comput Animat Virt Worlds 28(3–4)

  • Wei P, Li Z, Li X et al (2018) An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Struct Multidiscip Optim 58:831–849

  • Xin L, Chang L, Zongliang D et al (2019) Machine learning-driven real-time topology optimization under moving Morphable component (MMC)-based framework[J]. J Appl Mech 86(1):011004

  • Xu G, Zhao K, Wang MY (2004) A new approach for simultaneous shape and topology optimization based on implicit topology description functions[J]. Control Cybern 34(34):255–282

    Google Scholar 

  • Yan S, Wang F, Sigmund O (2018) On the non-optimality of tree structures for heat conduction[J]. J Heat Mass Transf 122:660–680

    Article  Google Scholar 

  • Zhang Y, Wang W, Hughes TJR (2012) Solid T-spline construction from boundary representations for genus-zero geometry[J]. Comput Methods Appl Mech Eng 249:185–197

    Article  MathSciNet  MATH  Google Scholar 

  • Zhou Y, Sueda S, Matusik W et al (2014) Boxelization: folding 3D objects into boxes[J]. ACM Transactions on Graphics (TOG) 33(4):71

    Google Scholar 

  • Zhou Y, Zhang W, Zhu J et al (2016) Feature-driven topology optimization method with signed distance function[J]. Comput Methods Appl Mech Eng S004578251630634X

Download references

Replication of results

The results presented in the paper can be reproduced. We do not want to public the codes. But readers can contact us to get the codes by e-mail jhong_email@163.com.

Funding

The work reported in this paper is supported by the National Natural Science Foundation of China (51822507 and 51675410) and the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Institutions of China (161047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Julián Andrés Norato

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Tang, W., Ding, S. et al. A generative design method for structural topology optimization via transformable triangular mesh (TTM) algorithm. Struct Multidisc Optim 62, 1159–1183 (2020). https://doi.org/10.1007/s00158-020-02544-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02544-0

Keywords

Navigation