Skip to main content
Log in

A penalized blind likelihood Kriging method for surrogate modeling

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Surrogate modeling is commonly used to replace expensive simulations of engineering problems. Kriging is a popular surrogate for deterministic approximation due to its good nonlinear fitting ability. Previous researches demonstrate that constructing an appropriate trend function or a better stochastic process can improve the prediction accuracy of Kriging. However, they are not improved simultaneously to estimate the model parameters, thus limiting the further improvement on the prediction capability. In this paper, a novel penalized blind likelihood Kriging (PBLK) method is proposed to obtain better model parameters and improve the prediction accuracy. It improves the trend function and stochastic process with regularization techniques simultaneously. First, the formulation of the penalized blind likelihood function is introduced, which penalizes the regression coefficients and correlation parameters at the same time. It is a general expression and therefore can incorporate any type of penalty functions easily. To maximize the penalized blind likelihood function effectively and efficiently, a nested optimization algorithm is proposed to estimate the model parameters sequentially with gradient and Hessian information. As different regularization parameters can lead to different optimal model parameters and influence the prediction accuracy, a cross-validation-based grid search method is proposed to select good regularization parameters. The proposed PBLK method is tested on several analytical functions and two engineering examples, and the experimental results confirm the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Audet C, Dennis Jr JE (2002) Analysis of generalized pattern searches. SIAM J Optim 13(3):889–903

    Article  MathSciNet  Google Scholar 

  • Balabanov VO, Weckner O, Wu J (2014) Reducing error of polynomial approximation outside of designated design space for practical problems. In: 15th AIAA/ISSMO multidisciplinary analysis and optimization conference, p 2303

  • Byrd RH, Gilbert JC, Nocedal J (2000) A trust region method based on interior point techniques for nonlinear programming. Math Program 89(1):149–185

    Article  MathSciNet  Google Scholar 

  • Chen S, Jiang Z, Yang S, Apley DW, Chen W (2016) Nonhierarchical multi-model fusion using spatial random processes. Int J Numer Methods Eng 106(7):503–526

    Article  MathSciNet  Google Scholar 

  • Choi K, Jayakumar P, Funk M, Gaul N, Wasfy TM (2019) Framework of reliability-based stochastic mobility map for next generation nato reference mobility model. J Comput Nonlin Dyn 14(2):021,012

    Article  Google Scholar 

  • Dette H, Pepelyshev A (2010) Generalized latin hypercube design for computer experiments. Technometrics 52(4):421–429

    Article  MathSciNet  Google Scholar 

  • Fan J, Li R (2001) Variable selection via nonconcave penalized likelihood and its oracle properties. J Am Stat Assoc 96(456):1348–1360

    Article  MathSciNet  Google Scholar 

  • Forrester AIJ, Sóbester A, Keane AJ (2008) Engineering design via surrogate modelling: a practical guide. Wiley

  • Gramacy RB, Lee HK (2009) Adaptive design and analysis of supercomputer experiments. Technometrics 51(2):130–145

    Article  MathSciNet  Google Scholar 

  • Haftka RT, Villanueva D, Chaudhuri A (2016) Parallel surrogate-assisted global optimization with expensive functions–a survey. Struct Multidiscip Optim 54(1):3–13

    Article  MathSciNet  Google Scholar 

  • Hoerl AE, Kennard RW (1970) Ridge regression: biased estimation for nonorthogonal problems. Technometrics 12(1):55–67

    Article  Google Scholar 

  • Hung Y (2011) Penalized blind Kriging in computer experiments. Stat Sin 21(3):1171–1190

    Article  MathSciNet  Google Scholar 

  • Joseph VR, Hung Y, Sudjianto A (2008) Blind Kriging: a new method for developing metamodels. J Mech Des 130(3):1–8

    Article  Google Scholar 

  • Kalnins K, Ozolins O, Jekabsons G (2008) Metamodels in design of GFRP composite stiffened deck structure. In: Proceedings of 7th ASMOUK/ISSMO international conference on engineering design optimization, association for structural and multidisciplinary optimization in the UK Bath. Citeseer, UK

  • Kennedy J (2010) Particle swarm optimization. Encyclop Mach Learn, 760–766

  • Kersaudy P, Sudret B, Varsier N, Picon O, Wiart J (2015) A new surrogate modeling technique combining Kriging and polynomial chaos expansions–application to uncertainty analysis in computational dosimetry. J Comput Phys 286:103–117

    Article  MathSciNet  Google Scholar 

  • Li R, Sudjianto A (2005) Analysis of computer experiments using penalized likelihood in Gaussian Kriging models. Technometrics 47(2):111–120

    Article  MathSciNet  Google Scholar 

  • Liang H, Zhu M, Wu Z (2014) Using cross-validation to design trend function in Kriging surrogate modeling. AIAA J 52(10):2313–2327

    Article  Google Scholar 

  • Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE–a Matlab Kriging toolbox–version 2.0. Tech. rep., Technical University of Denmark

  • Mardia K, Watkins A (1989) On multimodality of the likelihood in the spatial linear model. Biometrika 76 (2):289–295

    Article  MathSciNet  Google Scholar 

  • Martin JD (2009) Computational improvements to estimating Kriging metamodel parameters. J Mech Des 131(8):084,501

    Article  Google Scholar 

  • McIlhagga W (2016) Penalized: a Matlab toolbox for fitting generalized linear models with penalties. J Statist Softw 72(6):1–21

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization. Springer Science & Business Media

  • Ollar J, Mortished C, Jones R, Sienz J, Toropov V (2017) Gradient based hyper-parameter optimisation for well conditioned Kriging metamodels. Struct Multidiscip Optim 55(6):2029–2044

    Article  MathSciNet  Google Scholar 

  • Palar PS, Shimoyama K (2017) On multi-objective efficient global optimization via universal Kriging surrogate model. In: In 2017 IEEE congress on evolutionary computation (CEC). IEEE, pp 621–628

  • Palar PS, Shimoyama K (2018) On efficient global optimization via universal Kriging surrogate models. Struct Multidiscip Optim 57(6):2377–2397

    Article  MathSciNet  Google Scholar 

  • Park MY, Hastie T (2007) L1-regularization path algorithm for generalized linear models. J R Stat Soc 69 (4):659–677

    Article  MathSciNet  Google Scholar 

  • Park C, Haftka RT, Kim NH (2017) Remarks on multi-fidelity surrogates. Struct Multidiscip Optim 55 (3):1029–1050

    Article  MathSciNet  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989) Design and analysis of computer experiments. Stat Sci 4(4):409–423

    Article  MathSciNet  Google Scholar 

  • Sasena MJ (2002) Flexibility and efficiency enhancements for constrained global design optimization with Kriging approximations. PhD thesis, University of Michigan Ann Arbor

  • Schöbi R, Sudret B, Wiart J (2015) Polynomial-chaos-based Kriging. Int J Uncertain Quantif 5 (2):171–193

    Article  MathSciNet  Google Scholar 

  • Schöbi R, Sudret B, Marelli S (2016) Rare event estimation using polynomial-chaos Kriging. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems Part A: Civil Engineering 3(2):D4016,002

    Google Scholar 

  • Song H, Choi K, Lamb D (2013) A study on improving the accuracy of Kriging models by using correlation model/mean structure selection and penalized log-likelihood function. In: Tenth World congress on structural and multidisciplinary optimization. Orlando

  • Stickel JM, Nagarajan M (2012) Glass fiber-reinforced composites: from formulation to application. Int J Appl Glas Sci 3(2):122–136

    Article  Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc 58(1):267–288

    MathSciNet  MATH  Google Scholar 

  • Toal DJ, Bressloff N, Keane A, Holden C (2011) The development of a hybridized particle swarm for Kriging hyperparameter tuning. Eng Optim 43(6):675–699

    Article  Google Scholar 

  • Viana FAC (2011) Surrogates toolbox user’s guide. Gainesville, FL, Version 3.0. https://sites.google.com/site/srgtstoolbox/

  • Viana FAC, Simpson TW, Balabanov V, Toropov V (2014) Metamodeling in multidisciplinary design optimization: how far have we really come? AIAA J 52(4):670–690

    Article  Google Scholar 

  • Waltz RA, Morales JL, Nocedal J, Orban D (2006) An interior algorithm for nonlinear optimization that combines line search and trust region steps. Math Program 107(3):391–408

    Article  MathSciNet  Google Scholar 

  • Warnes J, Ripley B (1987) Problems with likelihood estimation of covariance functions of spatial Gaussian processes. Biometrika 74(3):640–642

    Article  MathSciNet  Google Scholar 

  • Yu Y, Lyu Z, Xu Z, Martins JR (2018) On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization. Aerosp Sci Technol 75:183–199

    Article  Google Scholar 

  • Zhang Y, Kim NH, Park C, Haftka RT (2016) Function extrapolation of noisy data using converging lines. In: AIAA Modeling and simulation technologies conference, p 2144

  • Zhang Y, Park C, Kim NH, Haftka RT (2017) Function prediction at one inaccessible point using converging lines. J Mech Des 139(5):051,402

    Article  Google Scholar 

  • Zhang Y, Yao W, Ye S, Chen X (2019) A regularization method for constructing trend function in Kriging model. Struct Multidiscip Optim 59(4):1221–1239

    Article  Google Scholar 

  • Zhao L, Choi K, Lee I (2011) Metamodeling method using dynamic Kriging for design optimization. AIAA J 49(9):2034–2046

    Article  Google Scholar 

  • Zhao L, Choi KK, Lee I, Gorsich D (2013) Conservative surrogate model using weighted Kriging variance for sampling-based RBDO. J Mech Des 135(9):091,003

    Article  Google Scholar 

  • Zhu Z, Du X (2016) Reliability analysis with Monte Carlo simulation and dependent Kriging predictions. J Mech Des 138(12):121,403

    Article  Google Scholar 

  • Zou H (2006) The adaptive lasso and its oracle properties. J Am Stat Assoc 101(486):1418–1429

    Article  MathSciNet  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Nos. 11725211 and 51675525).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqian Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: KK Choi

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The gradient and Hessian matrix of the negative profile penalized blind likelihood function are derived in the following. We first assume that the regression coefficients β and process variance σ2 are both fixed. Then, the gradient can be written as follows:

$$ \begin{array}{@{}rcl@{}} \frac{\partial Q}{\partial \theta_{j}}\!&=&\!-\frac{1}{2|\sigma^{2}\mathbf{R}|}|\sigma^{2}\mathbf{R}| \text{tr}((\sigma^{2}\mathbf{R})^{-1}\sigma^{2}\dot{\mathbf{R}}_{j}) \\ &&+\frac{1}{2}\mathbf{e}^{\text{T}}(\sigma^{2}\mathbf{R})^{-1}\sigma^{2}\dot{\mathbf{R}}_{j}(\sigma^{2}\mathbf{R})^{-1}\mathbf{e}+N\dot{p}_{j}^{\mu} \\ &=\!&-\frac{1}{2}\text{tr}((\mathbf{R})^{-1}\dot{\mathbf{R}}_{j})+\frac{1}{2}\text{tr}((\sigma^{2}\mathbf{R})^{-1}\mathbf{e}\mathbf{e}^{\text{T}}\mathbf{R}^{-1}\dot{\mathbf{R}}_{j})\!+N\dot{p}_{j}^{\mu} \\ &=&-\frac{1}{2}\text{tr}(\mathbf{R}^{-1}\{\sigma^{-2}\mathbf{e}\mathbf{e}^{\text{T}}-\mathbf{R}\}\mathbf{R}^{-1}\dot{\mathbf{R}}_{j})\\ &&+N\dot{p}_{j}^{\mu} ,\quad \text{\!for} \ j=1,...,D , \end{array} $$
(37)

where e = yFβ, \(\dot {\mathbf {R}}_{j}=\partial \mathbf {R}/\partial \theta _{j}\), \(\dot {p}_{j}^{\mu }=\partial p^{\mu }/\partial \theta _{j}\), and tr(⋅) is the trace of a matrix. Furthermore, the Hessian matrix can be given as follows:

$$ \begin{array}{@{}rcl@{}} \frac{\partial^{2} Q}{\partial \theta_{j} \partial \theta_{m}}&=& -\frac{1}{2}\text{tr}((-\mathbf{R}^{-1}\dot{\mathbf{R}}_{m}\mathbf{R}^{-1}\sigma^{-2}\mathbf{e}\mathbf{e}^{\text{T}}\mathbf{R}^{-1}\\&&-\mathbf{R}^{-1}\sigma^{-2}\mathbf{e}\mathbf{e}^{\text{T}}\mathbf{R}^{-1}\dot{\mathbf{R}}_{m}\mathbf{R}^{-1} \\ &&+\mathbf{R}^{-1}\dot{\mathbf{R}}_{m}\mathbf{R}^{-1})\dot{\mathbf{R}}_{j}+\mathbf{R}^{-1}\{\sigma^{-2}\mathbf{e}\mathbf{e}^{\text{T}}\\&&-\mathbf{R}\}\mathbf{R}^{-1}\ddot{\mathbf{R}}_{jm})+N\ddot{p}_{jm}^{\mu} \\ &=&\ \frac{1}{2}\text{tr}(\mathbf{R}^{-1}\dot{\mathbf{R}}_{j}\mathbf{R}^{-1}\{2\sigma^{-2}\mathbf{e}\mathbf{e}^{\text{T}}-\mathbf{R}\}\mathbf{R}^{-1}\dot{\mathbf{R}}_{m}) \\ &&-\frac{1}{2}\text{tr}(\mathbf{R}^{-1}\{\sigma^{-2}\mathbf{e}\mathbf{e}^{\text{T}}-\mathbf{R}\}\mathbf{R}^{-1}\ddot{\mathbf{R}}_{jm})\\ &&+N\ddot{p}_{jm}^{\mu} , \quad \text{for} \ j,m=1,...,D , \end{array} $$
(38)

where \(\ddot {\mathbf {R}}_{jm}=\partial ^{2}\mathbf {R}/\partial \theta _{j} \partial \theta _{m}\) and \(\ddot {p}_{jm}^{\mu }=\partial ^{2} p^{\mu }/\partial \theta _{j} \partial \theta _{m}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yao, W., Chen, X. et al. A penalized blind likelihood Kriging method for surrogate modeling. Struct Multidisc Optim 61, 457–474 (2020). https://doi.org/10.1007/s00158-019-02368-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02368-7

Keywords

Navigation