Skip to main content
Log in

Global kriging surrogate modeling for general time-variant reliability-based design optimization problems

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

While design optimization under uncertainty has been widely studied in the last decades, time-variant reliability-based design optimization (t-RBDO) is still an ongoing research field. The sequential and mono-level approaches show a high numerical efficiency. However, this might be to the detriment of accuracy especially in case of nonlinear performance functions and non-unique time-variant most probable failure point (MPP). A better accuracy can be obtained with the coupled approach, but this is in general computationally prohibitive. This work proposes a new t-RBDO method that overcomes the aforementioned limitations. The main idea consists in performing the time-variant reliability analysis on global kriging models that approximate the time-dependent limit state functions. These surrogates are built in an artificial augmented reliability space and an efficient adaptive enrichment strategy is developed that allows calibrating the models simultaneously. The kriging models are consequently only refined in regions that may potentially be visited by the optimizer. It is also proposed to use the same surrogates to find the deterministic design point with no extra computational cost. Using this point to launch the t-RBDO guarantees a fast convergence of the optimization algorithm. The proposed method is demonstrated on problems involving nonlinear limit state functions and non-stationary stochastic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Agarwal H (2004) Reliability based design optimization: formulations and methodologies, Ph.D. thesis, University of Notre Dame, Indiana

  • Andrieu-Renaud C, Sudret B, Lemaire M (2004) The PHI2 method: a way to compute time-variant reliability. Reliab Eng Syst Saf 84(1):75–86

    Article  Google Scholar 

  • Aoues Y (2008) Optimisation fiabiliste de la conception et de la maintenance des structures, Ph.D. thesis, Université Blaise Pascal - Clermont-Ferrand II

  • Aoues Y, Chateauneuf A (2010) Benchmark study of numerical methods for reliability-based design optimization. Struct Multidisc Optim 41(2):277–294

    Article  MathSciNet  MATH  Google Scholar 

  • Aoues Y, Chateauneuf A, Lemosse D, El-Hami A (2013) Optimal design under uncertainty of reinforced concrete structures using system reliability approach. Int J Uncertain Quantif 3(6):487–498

    Article  MathSciNet  Google Scholar 

  • Du X, Chen W (2004) Sequential optimization and reliability assessment method for efficient probabilistic design. J Mech Des:225–233

  • Dubourg V (2011) Adaptive surrogate models for reliability analysis and reliability-based design optimization, Ph.D. thesis, Université Blaise Pascal - Clermont II

  • Dubourg V, Sudret B, Bourinet JM (2011) Reliability-based design optimization using kriging surrogates and subset simulation. Struct Multidiscip Optim 44(5):673–690

    Article  Google Scholar 

  • Echard B, Gayton N, Lemaire M (2011) AK-MCS: An active learning reliability method combining Kriging and Monte Carlo Simulation. Struct Saf 33(2):145–154

    Article  Google Scholar 

  • Hawchar L, El Soueidy CP, Schoefs F (2017) Principal component analysis and polynomial chaos expansion for time-variant reliability problems. Reliab Eng Syst Saf 167:406–416

    Article  Google Scholar 

  • Hu Z, Du X (2013) Time-dependent reliability analysis with joint upcrossing rates. Struct Multidiscip Optim 48(5):893–907

    Article  MathSciNet  Google Scholar 

  • Hu Z, Du X (2015) Mixed Efficient Global Optimization for Time-Dependent Reliability Analysis. J Mech Des 137(5):051401

    Article  Google Scholar 

  • Hu Z, Du X (2016) Reliability-based design optimization under stationary stochastic process loads. Eng Optim 48(8):1296–1312

    Article  MathSciNet  Google Scholar 

  • Hu Z, Mahadevan S (2016a) A single-loop kriging surrogate modeling for time-dependent reliability analysis. J Mech Des 138(6):061406

    Article  Google Scholar 

  • Hu Z, Mahadevan S (2016b) Resilience assessment based on time-dependent system reliability analysis. ASME J Mech Des 138(11):111404

    Article  Google Scholar 

  • Huang SP, Quek ST, Phoon KK (2001) Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes. Int J Numer Meth Engng 52(9):1029–1043

    Article  MATH  Google Scholar 

  • Jensen HA, Kusanovic DS, Valdebenito MA, Schuëller GI (2012) Reliability-based design optimization of uncertain stochastic systems: gradient-based scheme. J Eng Mech 138(1):60–70

    Article  Google Scholar 

  • Jiang C, Huang XP, Han X, Zhang DQ (2014) A time-variant reliability analysis method based on stochastic process discretization. J Mech Des 136(9):091009

    Article  Google Scholar 

  • Jones D, Schonlau M, Welch W (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Kuschel N, Rackwitz R (2000) Optimal design under time-variant reliability constraints. Struct Saf 22(2):113–127

    Article  MATH  Google Scholar 

  • Lee TH, Jung JJ (2008) A sampling technique enhancing accuracy and efficiency of metamodel-based RBDO: Constraint boundary sampling. Comput Struct 86(13):1463–1476

    Article  Google Scholar 

  • Li CC, Der Kiureghian A (1993) Optimal Discretization of Random Fields. J Eng Mech 119(6):1136–1154

    Article  Google Scholar 

  • Li J, Mourelatos Z, Singh A (2012) Optimal preventive maintenance schedule based on lifecycle cost and time-dependent reliability. SAE Int J Mater Manuf 5(1):87–95

    Article  Google Scholar 

  • Marrel A, Iooss B, Van Dorpe F, Volkova E (2008) An efficient methodology for modeling complex computer codes with Gaussian processes. Comput Stat Data Anal 52(10):4731–4744

    Article  MathSciNet  MATH  Google Scholar 

  • Meng Z, Zhou H, Li G, Yang D (2016) A decoupled approach for non-probabilistic reliability-based design optimization. Comput Struct 175:65–73

    Article  Google Scholar 

  • Phoon KK, Huang SP, Quek S (2005) Simulation of strongly non-Gaussian processes using Karhunen-Loeve expansion. Prob Eng Mech 20(2):188–198

    Article  Google Scholar 

  • Polak E (1997) Optimization: algorithms and consistent approximations, Springer

  • Rathod V, Yadav OP, Rathore A, Jain R (2012) Reliability-based design optimization considering probabilistic degradation behavior. Qual Reliab Eng Int 28(8):911–923

    Article  Google Scholar 

  • Rice SO (1944) Mathematical Analysis of Random Noise. Bell Syst Tech J 23(3):282–332

    Article  MathSciNet  MATH  Google Scholar 

  • Singh A, Mourelatos Z, Li J (2010) Design for lifecycle cost using time-dependent reliability. J Mech Des 132(9):091008

    Article  Google Scholar 

  • Sudret B, Der Kiureghian A (2000) Stochastic finite element methods and reliability: a state-of-the-art report. University of California, Berkley

    Google Scholar 

  • Taflanidis AA, Beck JL (2009) Stochastic subset optimization for reliability optimization and sensitivity analysis in system design. Comput Struct 87(5):318–331

    Article  Google Scholar 

  • Wang Z, Chen W (2017) Confidence-based adaptive extreme response surface for time-variant reliability analysis under random excitation. Struct Saf 64:76–86

    Article  Google Scholar 

  • Wang Z, Wang P (2012) A nested extreme response surface approach for time-dependent reliability-based design optimization. J Mech Des 134(12):121007

    Article  Google Scholar 

  • Wang Z, Wang P (2013) A new approach for reliability analysis with time-variant performance characteristics. Reliab Eng Syst Saf 115:70–81

    Article  Google Scholar 

  • Wu YT (1994) Computational methods for efficient structural reliability and reliability sensitivity analysis. AIAA J 32(8):1717–1723

    Article  MATH  Google Scholar 

  • Zhang D, Han X, Jiang C, Liu J, Li Q (2017) Time-dependent reliability analysis through response Surface method. J Mech Des 139(4):041404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charbel-Pierre El Soueidy.

Additional information

Responsible Editor: Erdem Acar

Appendix: Kriging technique

Appendix: Kriging technique

The kriging technique consists in approximating a function G(x) that depends on a vector of input variables x = {x1, x2, …, xm} as a sum of a regression model and a Gaussian stochastic process. This can be expressed as follows:

$$ \widehat{G}\left(\mathbf{x}\right)=\mathbf{f}{\left(\mathbf{x}\right)}^t\boldsymbol{\upbeta} +{\upsigma}_{\mathrm{Z}}^2Z\left(\mathbf{x}\right) $$
(27)

where f(x) = {f1(x), f2(x), …, fp(x)}t is a vector of regression functions, β is a vector of unknown coefficients and f(x)tβ is the mean value of the Gaussian process, also known as the trend. \( {\upsigma}_{\mathrm{Z}}^2 \) is the Gaussian process variance and Z(x) is a stationary Gaussian process with zero mean and unit variance. Z(x) is completely described by its user-defined autocorrelation function R(x(i), x(j), θ) where θ = {θ1, θ2, …, θd} represents the vector of unknown correlation parameters to be determined.

Given an experimental design {x(i), G(x(i))}, i = 1, …, n, β and \( {\upsigma}_{\mathrm{Z}}^2 \) can be approximated as follows (Jones et al., 1998):

$$ \widehat{\boldsymbol{\upbeta}}\left(\boldsymbol{\uptheta} \right)={\left({\mathbf{F}}^t{\mathbf{R}}^{-1}\mathbf{F}\right)}^{-1}{\mathbf{F}}^t{\mathbf{R}}^{-1}\mathbf{G} $$
(28)

and

$$ {\widehat{\upsigma}}_{\mathrm{Z}}^2\left(\boldsymbol{\uptheta} \right)=\frac{1}{n}{\left(\mathbf{G}-\mathbf{F}\boldsymbol{\upbeta } \right)}^t{\mathbf{R}}^{-1}\left(\mathbf{G}-\mathbf{F}\boldsymbol{\upbeta } \right) $$
(29)

where F is a matrix of size n × p and of general term Fij = fj(x(i)). And G = {G(x(1)), G(x(2)), …, G(x(n))}t is the response vector.

Note that β and \( {\upsigma}_{\mathrm{Z}}^2 \) both depend on the correlation parameters θi. The optimal values of θ can be determined by maximum likelihood estimation (Marrel et al., 2008):

$$ {\boldsymbol{\uptheta}}^{opt}=\underset{\boldsymbol{\uptheta}}{\mathit{\arg}\;\mathit{\min}}\left(\widehat{\sigma}2{\left(\det \mathbf{R}\right)}^{\raisebox{1ex}{$1$}\!\left/ \!\raisebox{-1ex}{$n$}\right.}\right) $$
(30)

Once the kriging parameters are determined, they can be used to predict the model response at a new trial point x as a Gaussian random variable of mean \( {\mu}_{\widehat{G}}\left({\mathbf{x}}^{\ast}\right) \) and variance \( {\sigma}_{\widehat{G}}^2\left({\mathbf{x}}^{\ast}\right) \) (Jones et al., 1998) defined as follows:

$$ {\mu}_{\widehat{G}}\left({\mathbf{x}}^{\ast}\right)=\mathbf{f}{\left({\mathbf{x}}^{\ast}\right)}^t\boldsymbol{\upbeta} +\mathbf{r}{\left({\mathbf{x}}^{\ast}\right)}^t{\mathbf{R}}^{-1}\left(\mathbf{G}-\mathbf{F}\boldsymbol{\upbeta } \right) $$
(31)

and

$$ {\sigma}_{\widehat{G}}^2\left({\mathbf{x}}^{\ast}\right)={\upsigma}_{\mathrm{Z}}^2\left(1-\left[\mathbf{f}{\left({\mathbf{x}}^{\ast}\right)}^t\kern0.75em \mathbf{r}{\left({\mathbf{x}}^{\ast}\right)}^t\right]\left[\begin{array}{cc}\mathbf{0}& {\mathbf{F}}^t\\ {}\mathbf{F}& \mathbf{R}\end{array}\right]\left[\begin{array}{c}\mathbf{f}\left({\mathbf{x}}^{\ast}\right)\\ {}\mathbf{r}\left({\mathbf{x}}^{\ast}\right)\end{array}\right]\right) $$
(32)

where r(x) is the correlation vector between x and the inputs of the experimental design: ri(x) = R(x(i), x, θopt).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hawchar, L., El Soueidy, CP. & Schoefs, F. Global kriging surrogate modeling for general time-variant reliability-based design optimization problems. Struct Multidisc Optim 58, 955–968 (2018). https://doi.org/10.1007/s00158-018-1938-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-1938-y

Keywords

Navigation