Skip to main content
Log in

Variance-based sensitivity analysis for models with correlated inputs and its state dependent parameter solution

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Sensitivity analysis is indispensable to structural design and optimization. This paper focuses on sensitivity analysis for models with correlated inputs. To explore the contributions of correlated inputs to the uncertainty in a model output, the universal expressions of the variance contributions of the correlated inputs are first derived in the paper based on the high dimensional model representation (HDMR) of the model function. Then by analyzing the composition of these variance contributions, the variance contributions by an individual correlated input to the model output are further decomposed into independent contribution by the individual input itself, independent contribution by interaction between the individual input and the others, contribution purely by correlation between the individual input and the others, and contribution by interaction associated with correlation between the individual input and the others. The general expressions of these components are also derived. Based on the characteristics of these general expressions, a universal framework for estimating the various variance contributions of the correlated inputs is developed by taking the efficient state dependent parameter (SDP) method as an illustration. Numerical and engineering tests show that this decomposition of the variance contributions of the correlated inputs can provide useful information for exploring the sources of the output uncertainty and identifying the structure of the model function for the complicated models with correlated inputs. The efficiency and accuracy of the SDP-based method for estimating the various variance contributions of the correlated inputs are also demonstrated by the examples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

d :

Number of input variables

X :

Vector of input variables, i.e., X = (X 1, X 2,  … , X d )T

x :

Random samples of input X

Y :

Scalar model output equal to Y = g(X)

y :

Sample of output Y

f X (x):

Joint probability density function (PDF) of X

\( {f}_{{\mathbf{X}}_{- i}\mid {X}_i}\left({\mathbf{x}}_{- i}\right) \) :

Conditional PDF of X -i given X i

\( {f}_{X_i\mid {\mathbf{X}}_{- i}}\left({x}_i\right) \) :

Conditional PDF of X i given X -i

V[•]:

Variance operator

E(•):

Expectation operator

Cov[•, •]:

Covariance of [•, •]

d :

Set of subscripts of inputs X, i.e., d = {1,2,…,d}

\( {V}_i^{\mathrm{TC}} \) :

Total correlated contribution of X i

\( {V}_i^{\mathrm{C}} \) :

Correlated contribution of X i

\( {V}_i^{\mathrm{IC}} \) :

Variance contribution by interaction associated with correlation between X i and X -i

\( {V}_i^{\mathrm{OC}} \) :

Variance contribution due to pure correlation between X i and X -i

\( {V}_i^{\mathrm{TU}} \) :

Total uncorrelated contribution of X i

\( {V}_i^{\mathrm{U}} \) :

Independent variance contribution by X i itself

\( {V}_i^{\mathrm{IU}} \) :

Independent part of the contributions by interaction between X i and X -i

References

  • Alis OF, Rabitz H (1999) General foundations of high dimensional model representations. J Math Chem 25:197–233

    Article  MathSciNet  MATH  Google Scholar 

  • Bedford T. Sensitivity indices for (Tree)-dependent variables. In: Proceedings of the second international symposium on sensitivity analysis of model output, Venice, Italy. 1998.

  • Borgonovo E (2007) A new uncertainty importance measure. Reliab Eng Syst Saf 92(6):771–784

    Article  Google Scholar 

  • Castillo E, Minguez R, Castillo C (2008) Sensitivity analysis in optimization and reliability problems. Reliab Eng Sys Saf 93(12):1788–1800

    Article  Google Scholar 

  • Chun MH, Han SJ, Tak NI (2000) An uncertainty importance measure using a distance metric for the change in a cumulative dE2istribution function. Reliab Eng Syst Saf 70(3):313–321

    Article  Google Scholar 

  • Elegbede C (2005) Structural reliability assessment based on particles swarm optimization. Struct Saf 27:171–186

    Article  Google Scholar 

  • Fang S, Gertner GZ, Anderson A (2004) Estimation of sensitivity coefficients of nonlinear model input parameters which have a multinormal distribution. Comput Phys Commun 157(1):9–16

    Article  Google Scholar 

  • Gerstner T, Griebel M (1998) Numerical integration using sparse grids. Numer Algorithms 18:209–232

    Article  MathSciNet  MATH  Google Scholar 

  • Hao WR, Lu ZZ, Li LY (2013a) A new interpretation and validation of variance based importance measures for model with correlated inputs. Comput Phys Commun 184(5):1401–1413

    Article  MathSciNet  MATH  Google Scholar 

  • Hao WR, Lu ZZ, Wei PF (2013b) Uncertainty importance measure for models with correlated normal variables. Reliab Eng Syst Safety 112:48–58

    Article  Google Scholar 

  • Helton JC, Davis FJ (2000) Sampling-based methods. In: Saltelli A, Chan K, Scott EM (eds) Sensitivity analysis. Wiley, New York, pp 101–153

    Google Scholar 

  • Helton JC, Davis FJ (2003) Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab Eng Syst Saf 81:23–69

    Article  Google Scholar 

  • Hu Z, Mahadevan S (2016) Global sensitivity analysis-enhanced surrogate (GSAS) modeling for reliability analysis. Struct Multidisc Optim 53(3):501–521

    Article  MathSciNet  Google Scholar 

  • Iman RL, Hora SC (1990) A robust measure of uncertainty importance for use in fault tree system analysis. Risk Anal 10(3):401–406

    Article  Google Scholar 

  • Kucherenko S, Tarantola S, Annoni P (2012) Estimation of global sensitivity indices for models with dependent variables. Comput Phys Commun 183:937–946

    Article  MathSciNet  MATH  Google Scholar 

  • Lebrun R, Dutfoy A. An innovating analysis of the Nataf transformation from the copula viewpoint. Probabilist Eng Mech, 2009, 24: 312–320.

    Article  Google Scholar 

  • Li G, Hu JS, Wang SW et al (2006) Random sampling-high dimensional model representation (RS-HDMR) and orthogonality of its different order component functions. J. Phys. Chem A 110:2474–2485

    Article  Google Scholar 

  • Li G, Wang SW, Rabitz H (2002) Practical approaches to construct RS-HDMR component functions. J Phys Chem A 106:8721–8733

    Article  Google Scholar 

  • Li G, Rabitz H et al (2010) Global sensitivity analysis for systems with independent and/or correlated inputs. J Phys Chem 114:6022–6032

    Article  Google Scholar 

  • Liu PL, Kiureghian A (1986) Multivariate distribution models with prescribed marginals and covariances. Probabilist Eng Mech 1(2):105–112

    Article  Google Scholar 

  • Liu HB, Chen W, Sudjianto A (2006) Relative entropy based method for probabilistic sensitivity analysis in engineering design. J Mech Design 128(3):326–333

    Article  Google Scholar 

  • Lophaven S, Nielsen H, Sondergaard J, DACE A (2002) MATLAB kriging toolbox, Version 2.0. Technical Report IMM-TR-2002-12, Informatics and Mathematical Modelling, Technical University of Denmark. http://www.immm.dtu.dk/hbn/dace

  • Mara TA, Tarantola S (2012) Variance-based sensitivity indices for models with dependent inputs. Reliab Eng Syst Safety 107:115–121

    Article  Google Scholar 

  • NASA (1968). SP-8019 Buckling of thin-walled truncated-cones. NASA space vehicle design criteria (structures)

  • Novak E, Ritter K (1996) High dimensional integration of smooth functions over cubes. Numerische Mathematik Math 75(1):79–97

    Article  MathSciNet  MATH  Google Scholar 

  • Ratto M, Pagano A (2010) Using recursive algorithms for the efficient identification of smoothing spline ANOVA models. AStA Adv Stat Anal 94:367–388

    Article  MathSciNet  Google Scholar 

  • Ratto M, Tarantola S, Saltelli A, Young PC. (2004) Accelerated estimation of sensitivity indices using state dependent parameter models. In: Hanson KM, Hemez FM, editors, Sensitivity analysis of model output, Proceedings of the 4th international conference on sensitivity analysis of model output (SAMO 2004) Santa Fe, New Mexico, p 61–70

  • Ratto M, Pagano A, Young PC (2007) State dependent parameter meta-modelling and sensitivity analysis. Comput Phys Commun 177:863–876

    Article  Google Scholar 

  • Saltelli A, Marivoet J (1990) Non-parametric statistics in sensitivity analysis for model output: a comparison of selected techniques. Reliab Eng Syst Saf 28:229–253

    Article  Google Scholar 

  • Saltelli A, Tarantola S (2002) On the relative importance of input factors in mathematical models. J Am Stat Assoc 97:702–709

    Article  MATH  Google Scholar 

  • Saltelli A, Ratto M, Tarantola S. Model-free importance indicators for dependent input. In: Proceedings of SAMO 2001, third international symposium on sensitivity analysis of model output, Madrid. 2001.

  • Satelli A (2002) Sensitivity analysis for importance assessment. Risk Anal 22(3):579–590

    Article  Google Scholar 

  • Shi YM, Xu W, Qin CY, Xu Y (2009) Mathematical statistics. Science Press, Beijing, pp 217–221 (in Chinese)

    Google Scholar 

  • Sobol IM (2001) Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mat Comput Simulation 55(1):221–280

    MathSciNet  MATH  Google Scholar 

  • Storlie C, Bondell H, Reich B, Zhang H (2011, in press) Surface estimation, variable selection, and the nonparametric oracle property. Stat. Sin. http://www3.stat.sinica.edu.tw/statistica/, preprint article SS-08-241

  • Wei PF, Wang YY, Tang CH (2016) Time-variant global reliability sensitivity analysis of structures with both input random variables and stochastic processes. Struct Multidisc Optim. doi:10.1007/s00158-016-1598-8

    Google Scholar 

  • Xu C, Gertner GZ (2008) Uncertainty and sensitivity analysis for models with correlated parameters. Reliab Eng Syst Safe 93:1563–1573

    Article  Google Scholar 

  • Zuo W, Huang K, Bai J et al (2016) Sensitivity reanalysis of vibration problem using combined approximations method. Struct Multidisc Optim. doi:10.1007/s00158-016-1586-z

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. NSFC 51505382) and the Natural Science Foundation of Shaan Xi province (Grant No. 2016JQ1034).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luyi Li.

Appendices

Appendix 1 Reduction of (13)

It can be shown that

$$ E\left({g}_i\left({X}_i\right)- E\left({g}_i\left({X}_i\right)|{\mathbf{X}}_{- i}\right)\right)= E\left({g}_i\left({X}_i\right)\right)- E\left( E\left({g}_i\left({X}_i\right)|{\mathbf{X}}_{- i}\right)\right)=0 $$

Then the first covariance term in Eq. (13) can be transformed into the following form

$$ \begin{array}{l}\mathrm{Cov}\left[{g}_i\left({X}_i\right),{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right]- Cov\left[{\widehat{g}}_i\left({\mathbf{X}}_{- i}\right),{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right]\\ {}=\mathrm{Cov}\left[{g}_i\left({X}_i\right)-{\widehat{g}}_i\left({\mathbf{X}}_{- i}\right),{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right]\\ {}=\mathrm{Cov}\left[{g}_i\left({X}_i\right)- E\left({g}_i\left({X}_i\right)|{\mathbf{X}}_{- i}\right),{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right]\\ {}= E\left(\left({g}_i\left({X}_i\right)- E\left({g}_i\left({X}_i\right)|{\mathbf{X}}_{- i}\right)\right){g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right)\\ {}= E\left({g}_i\left({X}_i\right){g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right)- E\left( E\left({g}_i\left({X}_i\right)|{\mathbf{X}}_{- i}\right){g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right)\end{array} $$

Considering that the second term in right hand side of above equation can be simplified as follows,

$$ E\left( E\left({g}_i\left({X}_i\right)|{\mathbf{X}}_{- i}\right){g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right)=\underset{d-1}{\int } E\left({g}_i\left({X}_i\right)|{\mathbf{X}}_{- i}\right){g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right){f}_{{\mathbf{X}}_{- i}}\left({\mathbf{x}}_{- i}\right) d{\mathbf{x}}_{- i}=\underset{d-1}{\int }{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\underset{1}{\int }{g}_i\left({X}_i\right){f}_{X_i\mid {\mathbf{X}}_{- i}}\left({x}_i\right){ d x}_i{f}_{{\mathbf{X}}_{- i}}\left({\mathbf{x}}_{- i}\right) d{\mathbf{x}}_{- i}=\underset{d}{\int }{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right){g}_i\left({X}_i\right){f}_{\mathbf{X}}\left(\mathbf{x}\right) d\mathbf{x}= E\left({g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right){g}_i\left({X}_i\right)\right) $$

it is clear that

$$ \mathrm{Cov}\left[{g}_i\left({X}_i\right),{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right]-\mathrm{Cov}\left[{\widehat{g}}_i\left({\mathbf{X}}_{- i}\right),{g}_{\mathbf{u}}\left({\mathbf{X}}_{\mathbf{u}}\right)\right]=0 $$

Similarly, since the third covariance term in (13) can be transformed into

$$ \begin{array}{l}\mathrm{Cov}\left[{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right),{g}_{i\mathbf{u}}\Big({X}_i,{\mathbf{X}}_{\mathbf{u}}\Big)\right]-\mathrm{Cov}\left[{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right),{\widehat{g}}_{i\mathbf{u}}\left({\mathbf{X}}_{- i}\right)\right]\\ {}=\mathrm{Cov}\left[{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right),{g}_{i\mathbf{u}}\Big({X}_i,{\mathbf{X}}_{\mathbf{u}}\Big)-{\widehat{g}}_{i\mathbf{u}}\left({\mathbf{X}}_{- i}\right)\right]\\ {}=\mathrm{Cov}\left[{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right),{g}_{i\mathbf{u}}\Big({X}_i,{\mathbf{X}}_{\mathbf{u}}\Big)- E\left({g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right)|{\mathbf{X}}_{- i}\right)\right]\\ {}= E\left({g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right)\left({g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right)- E\left({g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right)|{\mathbf{X}}_{- i}\right)\right)\right)\\ {}= E\left({g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right){g}_{i\mathbf{u}}\Big({X}_i,{\mathbf{X}}_{\mathbf{u}}\Big)\right)- E\left({g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right) E\left({g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right)|{\mathbf{X}}_{- i}\right)\right)\end{array} $$

and

$$ E\left({g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right) E\left({g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right)|{\mathbf{X}}_{- i}\right)\right)=\underset{d-1}{\int }{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right) E\left({g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right)|{\mathbf{X}}_{- i}\right){f}_{{\mathbf{X}}_{- i}}\left({\mathbf{x}}_{- i}\right) d{\mathbf{x}}_{- i}=\underset{d-1}{\int }{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right)\underset{1}{\int }{g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right){f}_{X_i\mid {\mathbf{X}}_{- i}}\left({x}_i\right){ d x}_i{f}_{{\mathbf{X}}_{- i}}\left({\mathbf{x}}_{- i}\right) d{\mathbf{x}}_{- i}=\underset{d}{\int }{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right){g}_{i\mathbf{u}}\left({X}_i,{\mathbf{X}}_{\mathbf{u}}\right){f}_{\mathbf{X}}\left(\mathbf{x}\right) d\mathbf{x}= E\left({g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right){g}_{i\mathbf{u}}\Big({X}_i,{\mathbf{X}}_{\mathbf{u}}\Big)\right) $$

it can be readily obtained that

$$ \mathrm{Cov}\left[{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right),{g}_{i\mathbf{u}}\Big({X}_i,{\mathbf{X}}_{\mathbf{u}}\Big)\right]-\mathrm{Cov}\left[{g}_{{\mathbf{u}}^{\mathbf{\prime}}}\left({\mathbf{X}}_{{\mathbf{u}}^{\mathbf{\prime}}}\right),{\widehat{g}}_{i\mathbf{u}}\left({\mathbf{X}}_{- i}\right)\right]=0 $$

Appendix 2 Analytical variance contributions for correlated inputs in Example 1 of subsection 4.1

According to (1), the HDMR of the model \( Y=5+8{X}_1+{X}_2^2 \) in Example 1 is

$$ Y= g\left(\mathbf{X}\right)={g}_0+{g}_1\left({X}_1\right)+{g}_2\left({X}_2\right) $$

where

$$ {g}_0=5+8{\mu}_1+{\sigma}_2^2+{\mu}_2^2 $$
$$ {g}_1\left({X}_1\right)=8\left({X}_1\hbox{-} {\mu}_1\right) $$
$$ {g}_2\left({X}_2\right)={X}_2^2\hbox{-} {\sigma}_2^2\hbox{-} {\mu}_2^2 $$

Then, the total variance V(Y) of the model can be obtained as

$$ \begin{array}{l} V(Y)=\mathrm{Var}\left[{g}_1\left({X}_1\right)\right]+\mathrm{Var}\left[{g}_2\left({X}_2\right)\right]+2\mathrm{Cov}\left({g}_1\left({X}_1\right),{g}_2\left({X}_2\right)\right)\\ {}=64{\sigma}_1^2+2{\sigma}_2^4+4{\mu}_2^2{\sigma}_2^2+32{\rho}_{12}{\mu}_2{\sigma}_1{\sigma}_2\end{array} $$

According to the definition (9), the total correlated contributions of X 1 and X 2 are

$$ \begin{array}{l}{V}_1^{\mathrm{TC}}= V\left[ E\left( Y|{X}_1\right)\right]\\ {}=\mathrm{Var}\left[{g}_1\left({X}_1\right)\right]+\mathrm{Var}\left[ E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right]+2\mathrm{Cov}\left({g}_1\left({X}_1\right), E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right)\\ {}=64{\sigma}_1^2+2{\rho}_{12}^4{\sigma}_2^4+4{\rho}_{12}^2{\mu}_2^2{\sigma}_2^2+32{\rho}_{12}{\mu}_2{\sigma}_1{\sigma}_2\end{array} $$
$$ \begin{array}{l}{V}_2^{\mathrm{TC}}= V\left[ E\left( Y|{X}_2\right)\right]\\ {}=\mathrm{Var}\left[ E\left(\left.{g}_1\left({X}_1\right)\right|{X}_2\right)\right]+\mathrm{Var}\left[{g}_2\left({X}_2\right)\right]+2\mathrm{Cov}\left( E\left(\left.{g}_1\left({X}_1\right)\right|{X}_2\right),{g}_2\left({X}_2\right)\right)\\ {}=64{\rho}_{12}^2{\sigma}_1^2+2{\sigma}_2^4+4{\mu}_2^2{\sigma}_2^2+32{\rho}_{12}{\mu}_2{\sigma}_1{\sigma}_2\end{array} $$

According to the definition (14), the total uncorrelated contributions of X 1 and X 2 are

$$ {V}_1^{\mathrm{TU}}= V(Y)- V\left[ E\left( Y|{X}_2\right)\right]=\mathrm{Var}\left[{g}_1\left({X}_1\right)\right]-\mathrm{Var}\left[ E\left(\left.{g}_1\left({X}_1\right)\right|{X}_2\right)\right]=64{\sigma}_1^2\left(1-{\rho}_{12}^2\right) $$
$$ \begin{array}{l}{V}_2^{\mathrm{TU}}= V(Y)- V\left[ E\left( Y|{X}_1\right)\right]=\mathrm{Var}\left[{g}_2\left({X}_2\right)\right]-\mathrm{Var}\left[ E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right]\\ {}\begin{array}{rrrrrrrr}\hfill & \hfill & \hfill & \hfill & \hfill & \hfill & \hfill & \hfill \end{array}=2{\sigma}_2^4\left(1-{\rho}_{12}^4\right)+4{\mu}_2^2{\sigma}_2^2\left(1-{\rho}_{12}^2\right)\end{array} $$

From the definition of the independent contribution in (16), it can be seen that

$$ {V}_1^{\mathrm{U}}=\mathrm{Var}\left[{g}_1\left({X}_1\right)\right]-\mathrm{Var}\left[{\widehat{g}}_1\left({X}_2\right)\right]=\mathrm{Var}\left[{g}_1\left({X}_1\right)\right]-\mathrm{Var}\left[ E\left({g}_1\left({X}_1\right)|{X}_2\right)\right]={V}_1^{\mathrm{TU}} $$
$$ {V}_2^{\mathrm{U}}=\mathrm{Var}\left[{g}_2\left({X}_2\right)\right]-\mathrm{Var}\left[{\widehat{g}}_2\left({X}_1\right)\right]=\mathrm{Var}\left[{g}_2\left({X}_2\right)\right]-\mathrm{Var}\left[ E\left({g}_2\left({X}_2\right)|{X}_1\right)\right]={V}_2^{\mathrm{TU}} $$

and then the independent part of the contributions by interaction between X 1 and X 2 can be obtained according to (15) as

$$ \begin{array}{l}{V}_1^{\mathrm{IU}}={V}_1^{\mathrm{TU}}-{V}_1^{\mathrm{U}}=0\\ {}{V}_2^{\mathrm{IU}}={V}_2^{\mathrm{TU}}-{V}_2^{\mathrm{U}}=0\end{array} $$

The correlated contribution \( {V}_1^{\mathrm{C}} \) of X 1, purely correlated contribution \( {V}_1^{\mathrm{OC}} \) and the variance contribution by interaction associated with correlation \( {V}_1^{\mathrm{IC}} \) between X 1 and X 2 can be obtained by (1821) as follows,

$$ {V}_1^{\mathrm{C}}={V}_1^{\mathrm{TC}}-{V}_1^{\mathrm{U}}=\mathrm{Var}\left[ E\left({g}_1\left({X}_1\right)|{X}_2\right)\right]+\mathrm{Var}\left[ E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right]+2\mathrm{Cov}\left({g}_1\left({X}_1\right), E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right)=64{\sigma}_1^2{\rho}_{12}^2+4{\mu}_2^2{\rho}_{12}^2{\sigma}_2^2+2{\rho}_{12}^4{\sigma}_2^4+32{\rho}_{12}{\mu}_2{\sigma}_1{\sigma}_2{V}_1^{\mathrm{OC}}=\mathrm{Var}\left[ E\left({g}_1\left({X}_1\right)|{X}_2\right)\right]+\mathrm{Var}\left[ E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right]+2\mathrm{Cov}\left({g}_1\left({X}_1\right), E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right)=64{\sigma}_1^2{\rho}_{12}^2+4{\mu}_2^2{\rho}_{12}^2{\sigma}_2^2+2{\rho}_{12}^4{\sigma}_2^4+32{\rho}_{12}{\mu}_2{\sigma}_1{\sigma}_2{V}_1^{\mathrm{IC}}={V}_1^{\mathrm{C}}-{V}_1^{\mathrm{OC}}=0 $$

In the same way, \( {V}_2^{\mathrm{C}} \), \( {V}_2^{\mathrm{OC}} \) and \( {V}_2^{\mathrm{IC}} \) of X 2 can be obtained

$$ {V}_2^{\mathrm{C}}={V}_2^{\mathrm{TC}}-{V}_2^{\mathrm{U}}=\mathrm{Var}\left[ E\left({g}_1\left({X}_1\right)|{X}_2\right)\right]+\mathrm{Var}\left[ E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right]+2\mathrm{Cov}\left( E\left(\left.{g}_1\left({X}_1\right)\right|{X}_2\right),{g}_2\left({X}_2\right)\right)=64{\sigma}_1^2{\rho}_{12}^2+4{\mu}_2^2{\rho}_{12}^2{\sigma}_2^2+2{\rho}_{12}^4{\sigma}_2^4+32{\rho}_{12}{\mu}_2{\sigma}_1{\sigma}_2{V}_2^{\mathrm{OC}}=\mathrm{Var}\left[ E\left({g}_1\left({X}_1\right)|{X}_2\right)\right]+\mathrm{Var}\left[ E\left(\left.{g}_2\left({X}_2\right)\right|{X}_1\right)\right]+2\mathrm{Cov}\left( E\left(\left.{g}_1\left({X}_1\right)\right|{X}_2\right),{g}_2\left({X}_2\right)\right)=64{\sigma}_1^2{\rho}_{12}^2+4{\mu}_2^2{\rho}_{12}^2{\sigma}_2^2+2{\rho}_{12}^4{\sigma}_2^4+32{\rho}_{12}{\mu}_2{\sigma}_1{\sigma}_2{V}_2^{\mathrm{IC}}={V}_2^{\mathrm{C}}-{V}_2^{\mathrm{OC}}=0 $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Lu, Z. Variance-based sensitivity analysis for models with correlated inputs and its state dependent parameter solution. Struct Multidisc Optim 56, 919–937 (2017). https://doi.org/10.1007/s00158-017-1699-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1699-z

Keywords

Navigation