Skip to main content
Log in

Multi-objective design of post-tensioned concrete road bridges using artificial neural networks

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In order to minimize the total expected cost, bridges have to be designed for safety and durability. This paper considers the cost, the safety, and the corrosion initiation time to design post-tensioned concrete box-girder road bridges. The deck is modeled by finite elements based on problem variables such as the cross-section geometry, the concrete grade, and the reinforcing and post-tensioning steel. An integrated multi-objective harmony search with artificial neural networks (ANNs) is proposed to reduce the high computing time required for the finite-element analysis and the increment in conflicting objectives. ANNs are trained through the results of previous bridge performance evaluations. Then, ANNs are used to evaluate the constraints and provide a direction towards the Pareto front. Finally, exact methods actualize and improve the Pareto set. The results show that the harmony search parameters should be progressively changed in a diversification-intensification strategy. This methodology provides trade-off solutions that are the cheapest ones for the safety and durability levels considered. Therefore, it is possible to choose an alternative that can be easily adjusted to each need.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alberdi R, Khandelwal K (2015) Comparison of robustness of metaheuristic algorithms for steel frame optimization. Eng Struct 102:40–60. doi:10.1016/j.engstruct.2015.08.012

    Article  Google Scholar 

  • Beume N, Naujoks B, Emmerich M (2007) SMS-EMOA: Multiobjective selection based on dominated hypervolume. Eur J Oper Res 181:1653–1669. doi:10.1016/j.ejor.2006.08.008

    Article  MATH  Google Scholar 

  • Cai H, Aref AJ (2015) A genetic algorithm-based multi-objective optimization for hybrid fiber reinforced polymeric deck and cable system of cable-stayed bridges. Struct Multidiscip Optim 52:583–594. doi:10.1007/s00158-015-1266-4

    Article  Google Scholar 

  • Cao MS, Pan LX, Gao YF, Novák D, Ding ZC, Lehký D, Li XL (2015) Neural network ensemble-based parameter sensitivity analysis in civil engineering systems. Neural Comput Appl 1–8. doi:10.1007/s00521-015-2132-4

  • Chatterjee S, Sarkar S, Hore S, Dey N, Ashour AS, Balas VE (2016) Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings. Neural Comput Appl. 1–12. doi: 10.1007/s00521-016-2190-2

  • Coello CAC (2002) Theoretical and numerical constraint-handling techniques used with evolutionary algorithms: a survey of the state of the art. Comput Methods Appl Mech Eng 191:1245–1287. doi:10.1016/S0045-7825(01)00323-1

    Article  MathSciNet  MATH  Google Scholar 

  • Coello CAC, Lamont GB, Veldhuizen DA Van (2006) Evolutionary algorithms for solving multi-objective problems. Springer-Verlag New York, Inc

  • Computers and Structures Inc. (2015) Introduction to CSiBridge. Integrated 3D bridge analysis, design and rating. Berkeley, California, USA

  • Deb K (2011) Multi-objective optimisation using evolutionary algorithms: an introduction. In: Wang L, Ng AHC, Deb K (eds) Multi-objective evolutionary optimisation for product design and manufacturing. Springer, London, pp 3–34

    Chapter  Google Scholar 

  • Deb K, Nain PKS (2007) An evolutionary multi-objective adaptive meta-modeling procedure using artificial neural networks. In: Yang S, Ong Y-S, Jin Y (eds) Evolutionary computation in dynamic and uncertain environments. Springer, Berlin, pp 297–322

    Chapter  Google Scholar 

  • Dong Y, Frangopol DM, Saydam D (2013) Time-variant sustainability assessment of seismically vulnerable bridges subjected to multiple hazards. Earthq Eng Struct Dyn 42:1451–1467. doi:10.1002/eqe.2281

    Article  Google Scholar 

  • Emmerich M, Naujoks B (2004) Metamodel assisted multiobjective optimisation strategies and their application in airfoil design. In: Parmee IC (ed) Adaptive computing in design and manufacture VI. Springer, London, pp 249–260

    Chapter  Google Scholar 

  • European Committee for Standardisation (2003) EN 1991–2:2003. Eurocode 1: Actions on structures-Part 2: Traffic loads bridges

  • European Committee for Standardisation (2005) EN1992-2:2005. Eurocode 2: Design of concrete structures- Part 2: Concrete Bridge-Design and detailing rules. Brussels

  • Fomento M (2008) EHE-08: code on structural concrete. Ministerio de Fomento, Madrid

    Google Scholar 

  • Fomento M (2011) IAP-11: code on the actions for the design of road bridges. Ministerio de Fomento, Madrid

    Google Scholar 

  • García-Segura T, Yepes V (2016) Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Eng Struct 125:325–336. doi:10.1016/j.engstruct.2016.07.012

    Article  Google Scholar 

  • García-Segura T, Yepes V, Alcalá J (2014a) Life cycle greenhouse gas emissions of blended cement concrete including carbonation and durability. Int J Life Cycle Assess 19:3–12. doi:10.1007/s11367-013-0614-0

    Article  Google Scholar 

  • García-Segura T, Yepes V, Martí JV, Alcalá J (2014b) Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Lat Am J Solids Struct 11:1190–1205. doi:10.1590/S1679-78252014000700007

    Article  Google Scholar 

  • García-Segura T, Yepes V, Alcalá J, Pérez-López E (2015) Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Eng Struct 92:112–122. doi:10.1016/j.engstruct.2015.03.015

    Article  Google Scholar 

  • Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76:60–68

    Article  Google Scholar 

  • Giannakoglou KC (2002) Design of optimal aerodynamic shapes using stochastic optimization methods and computational intelligence. Prog Aerosp Sci 38:43–76. doi:10.1016/S0376-0421(01)00019-7

    Article  Google Scholar 

  • Hare W, Nutini J, Tesfamariam S (2013) A survey of non-gradient optimization methods in structural engineering. Adv Eng Softw 59:19–28. doi:10.1016/j.advengsoft.2013.03.001

    Article  Google Scholar 

  • Martí JV, Yepes V, González-Vidosa F (2015) Memetic algorithm approach to designing precast-prestressed concrete road bridges with steel fiber reinforcement. J Struct Eng 141:4014114. doi:10.1061/(ASCE)ST.1943-541X.0001058

    Article  Google Scholar 

  • Martí JV, García-Segura T, Yepes V (2016) Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. J Clean Prod 120:231–240. doi:10.1016/j.jclepro.2016.02.024

    Article  Google Scholar 

  • Martinez-Martin FJ, Gonzalez-Vidosa F, Hospitaler A, Yepes V (2012) Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. J Zhejiang Univ Sci A 13:420–432. doi:10.1631/jzus.A1100304

    Article  Google Scholar 

  • Martini K (2011) Harmony search method for multimodal size, shape, and topology optimization of structural frameworks. J Struct Eng 137:1332–1339. doi:10.1061/(ASCE)ST.1943-541X.0000378

    Article  Google Scholar 

  • Marti-Vargas JR, Ferri FJ, Yepes V (2013) Prediction of the transfer length of prestressing strands with neural networks. Comput Concr 12:187–209. doi:10.12989/cac.2013.12.2.187

    Article  Google Scholar 

  • McGee R (1999) Modeling of durability performance of Tasmanian bridges. In: Melchers R, M.G S (eds) Applications of statistics and probability: civil engineering, reliability and risk analysis. A.A. Balkema, Rotterdam, pp 297–306

  • Papadakis VG, Roumeliotis AP, Fardis MN, Vagenas CG (1996) Mathematical modelling of chloride effect on concrete du-rability and protection measures. In: Dhir RK, Jones MR (eds) Concrete repair, rehabilitation and protection. E&FN Spon, London, pp 165–174

    Google Scholar 

  • Paya I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of reinforced concrete building frames by simulated annealing. Comput Civ Infrastruct Eng 23:596–610. doi:10.1111/j.1467-8667.2008.00561.x

    Article  MATH  Google Scholar 

  • Protopapadakis E, Schauer M, Pierri E et al (2016) A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles. Comput Struct 162:68–79. doi:10.1016/j.compstruc.2015.08.005

    Article  Google Scholar 

  • Quaglia CP, Yu N, Thrall AP, Paolucci S (2014) Balancing energy efficiency and structural performance through multi-objective shape optimization: Case study of a rapidly deployable origami-inspired shelter. Energ Build 82:733–745. doi:10.1016/j.enbuild.2014.07.063

    Article  Google Scholar 

  • Ricart J, Hüttemann G, Lima J, Barán B (2011) Multiobjective harmony search algorithm proposals. Electron Notes Theor Comput Sci 281:51–67. doi:10.1016/j.entcs.2011.11.025

    Article  Google Scholar 

  • Sanad A, Saka MP (2001) Prediction of ultimate shear strength of reinforced-concrete deep beams using neural networks. J Struct Eng 127:818–828. doi:10.1061/(ASCE)0733-9445(2001)127:7(818)

    Article  Google Scholar 

  • Sarma KC, Adeli H (1998) Cost optimization of concrete structures. J Struct Eng 124:570–578. doi:10.1061/(ASCE)0733-9445(1998)124:5(570)

    Article  Google Scholar 

  • Shi X (2016) Experimental and modeling studies on installation of arc sprayed Zn anodes for protection of reinforced concrete structures. Front Struct Civ Eng 10:1–11. doi:10.1007/s11709-016-0312-7

    Article  Google Scholar 

  • Sreehari VM, Maiti DK (2016) Buckling load enhancement of damaged composite plates under hygrothermal environment using unified particle swarm optimization. Struct Multidiscip Optim 1–11. doi:10.1007/s00158-016-1498-y

  • Torres-Machi C, Chamorro A, Pellicer E et al (2015) Sustainable pavement management: Integrating economic, technical, and environmental aspects in decision making. Transp Res Rec J Transp Res Board 2523:56–63. doi:10.3141/2523-07

    Article  Google Scholar 

  • Vu KAT, Stewart MG (2000) Structural reliability of concrete bridges including improved chloride-induced corrosion models. Struct Saf 22:313–333. doi:10.1016/S0167-4730(00)00018-7

    Article  Google Scholar 

  • Xu H, Gao XZ, Wang T, Xue K (2010) Harmony search optimization algorithm: application to a reconfigurable mobile robot prototype. In: Geem ZW (ed) Recent advances in harmony search algorithm. Springer, Berlin, pp 11–22

    Chapter  Google Scholar 

  • Yepes V, García-Segura T, Moreno-Jiménez JM (2015a) A cognitive approach for the multi-objective optimization of RC structural problems. Arch Civ Mech Eng 15:1024–1036. doi:10.1016/j.acme.2015.05.001

    Article  Google Scholar 

  • Yepes V, Martí JV, García-Segura T (2015b) Cost and CO2 emission optimization of precast–prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Autom Constr 49:123–134. doi:10.1016/j.autcon.2014.10.013

    Article  Google Scholar 

  • Zavala GR, Nebro AJ, Luna F, Coello Coello CA (2013) A survey of multi-objective metaheuristics applied to structural optimization. Struct Multidiscip Optim 49:537–558. doi:10.1007/s00158-013-0996-4

    Article  MathSciNet  Google Scholar 

  • Zavrtanik N, Prosen J, Tušar M, Turk G (2016) The use of artificial neural networks for modeling air void content in aggregate mixture. Autom Constr 63:155–161. doi:10.1016/j.autcon.2015.12.009

    Article  Google Scholar 

  • Zitzler E, Thiele L (1998) Multiobjective optimization using evolutionary algorithms - a comparative case study. In: Eiben AE, Bäck T, Schoenauer M, Schwefel H-P (eds) Conference on parallel problem solving from nature- PPSN V. Springer Berlin Heidelberg, Amsterdam, The Netherlands, pp 292–301

Download references

Acknowledgements

The authors acknowledge the financial support of the Spanish Ministry of Economy and Competitiveness, along with FEDER funding (BRIDLIFE Project: BIA2014-56574-R) and the Research and Development Support Program of Universitat Politècnica de València (PAID-02-15).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana García-Segura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Segura, T., Yepes, V. & Frangopol, D.M. Multi-objective design of post-tensioned concrete road bridges using artificial neural networks. Struct Multidisc Optim 56, 139–150 (2017). https://doi.org/10.1007/s00158-017-1653-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1653-0

Keywords

Navigation