Skip to main content
Log in

Coanalytic ultrafilter bases

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study the definability of ultrafilter bases on \(\omega \) in the sense of descriptive set theory. As a main result we show that there is no coanalytic base for a Ramsey ultrafilter, while in L we can construct \(\Pi ^1_1\) P-point and Q-point bases. We also show that the existence of a \({\varvec{\Delta }}^1_{n+1}\) ultrafilter is equivalent to that of a \({\varvec{\Pi }}^1_n\) ultrafilter base, for \(n \in \omega \). Moreover we introduce a Borel version of the classical ultrafilter number and make some observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoszynski, T., Judah, H.: Set Theory: On the Structure of the Real Line Ak Peters Series. Taylor & Francis, London (1995)

    Book  Google Scholar 

  2. Blass, A.: Combinatorial Cardinal Characteristics of the Continuum (Handbook of Set Theory), pp. 395–489. Springer, Berlin, Heidelberg (2010)

    MATH  Google Scholar 

  3. Brendle, J., Fischer, V., Khomskii, Y.: Definable maximal independent families. Proc. Am. Math. Soc. 147(8), 3547–3557 (2019)

    Article  MathSciNet  Google Scholar 

  4. Brendle, J., Khomskii, Y.: Mad families constructed from perfect almost disjoint families. J. Symb. Logic 78(4), 1164–1180 (2013)

    Article  MathSciNet  Google Scholar 

  5. Erdős, P., Kunen, K., Mauldin, R.: Some additive properties of sets of real numbers. Fund. Math. 113(3), 187–199 (1981)

    Article  MathSciNet  Google Scholar 

  6. Fischer, V., Friedman, S.D., Khomskii, Y.: Co-analytic mad families and definable wellorders. Arch. Math. Logic 52(7–8), 809–822 (2013)

    Article  MathSciNet  Google Scholar 

  7. Fischer, V., Friedman, S.D., Törnquist, A.: Projective maximal families of orthogonal measures with large continuum. J. Logic Anal. 4, 15 (2012)

    MathSciNet  MATH  Google Scholar 

  8. Fischer, V., Schilhan, J.: Definable towers (submitted) (2018)

  9. Fischer, V., Schrittesser, D., Törnquist, A.: A co-analytic Cohen-indestructible maximal cofinitary group. J. Symb. Log. 82(2), 629–647 (2017)

    Article  MathSciNet  Google Scholar 

  10. Fischer, V., Törnquist, A.: A co-analytic maximal set of orthogonal measures. J. Symb. Log. 75(4), 1403–1414 (2010)

    Article  MathSciNet  Google Scholar 

  11. Gödel, K.: The Consistency of the Continuum Hypothesis. Princeton University Press, Princeton (1940)

    Book  Google Scholar 

  12. Halbeisen, L.J.: Combinatorial Set Theory. Springer, London (2012)

    Book  Google Scholar 

  13. Ihoda, J.I., Shelah, S.: \(\Delta ^1_2\)-sets of reals. Ann. Pure Appl. Logic 42(3), 207–223 (1989)

    Article  MathSciNet  Google Scholar 

  14. Jech, T.: Set theory. The third millennium edition, revised and expanded. Springer Monographs in Mathematics. Springer, Berlin (2003). xiv+769 pp. ISBN: 3-540-44085-2

  15. Miller, A.W.: Infinite combinatorics and definability. Ann. Pure Appl. Logic 41(2), 179–203 (1989)

    Article  MathSciNet  Google Scholar 

  16. Raghavan, D., Shelah, S.: Comparing the closed almost disjointness and dominating numbers. Fundam. Math. 217(1), 73–81 (2012)

    Article  MathSciNet  Google Scholar 

  17. Schilhan, J.: Tree forcing and definable maximal independent sets in hypergraphs (2020) (submitted)

  18. Schrittesser, D.: Compactness of maximal eventually different families. Bull. Lond. Math. Soc. 50(2), 340–348 (2018)

    Article  MathSciNet  Google Scholar 

  19. Shelah, S.: Proper and Improper Forcing. Perspectives in Mathematical Logic, 2nd edn. Springer, Berlin (1998)

    Book  Google Scholar 

  20. Talagrand, M.: Compacts de fonctions mesurables et filtres non mesurables. Stud. Math. 67(1), 13–43 (1980)

    Article  MathSciNet  Google Scholar 

  21. van der Waerden, B.L.: Beweis einer Baudetschen Vermutung. Nieuw Arch. Wisk. 15, 212–216 (1927)

    MATH  Google Scholar 

  22. van Engelen, F., Miller, A., Steel, J.: Rigid Borel sets and better quasiorder theory. Contemp. Math. Ser. AMS 65, 199–222 (1987)

    Article  Google Scholar 

  23. Vidnyánszky, Z.: Transfinite inductions producing coanalytic sets. Fundam. Math. 224(2), 155–174 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Austrian Science Fund, FWF, for generous support through START-Project Y1012-N35. We also thank the anonymous referee for many helpful comments that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Schilhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schilhan, J. Coanalytic ultrafilter bases. Arch. Math. Logic 61, 567–581 (2022). https://doi.org/10.1007/s00153-021-00801-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-021-00801-7

Keywords

Navigation