Skip to main content
Log in

Quantum logic is undecidable

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We investigate the first-order theory of closed subspaces of complex Hilbert spaces in the signature \((\vee ,\perp ,0,1)\), where ‘\(\perp \)’ is the orthogonality relation. Our main result is that already its quasi-identities are undecidable: there is no algorithm to decide whether an implication between equations and orthogonality relations implies another equation. This is a corollary of a recent result of Slofstra in combinatorial group theory. It follows upon reinterpreting that result in terms of the hypergraph approach to quantum contextuality, for which it constitutes a proof of the inverse sandwich conjecture. It can also be interpreted as stating that a certain quantum satisfiability problem is undecidable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. See also the survey [10] for a more recent exposition from a geometrical perspective.

  2. The formulation of [19] asks for the existence of a quantum model on H, but this is clearly equivalent: the existence of a quantum model requires the existence of a quantum representation to begin with; conversely, one can use a quantum representation and an arbitrary state in its underlying Hilbert space to obtain a quantum model.

  3. See [31] for an introduction to von Neumann algebras from the perspective of quantum logic, including a treatment of their lattices of projections (Section 6.2).

  4. Where as usual in von Neumann algebra theory, normal means continuous with respect to the ultraweak topologies.

References

  1. Birkhoff, G., von Neumann, J.: The logic of quantum mechanics. Ann. Math. 37(4), 823–843 (1936)

    Article  MathSciNet  Google Scholar 

  2. Engesser, K., Gabbay, D.M., Lehmann, D. (eds.): Handbook of quantum logic and quantum structures—quantum logic. Elsevier, London (2009)

    MATH  Google Scholar 

  3. Kalmbach, G.: Orthomodular lattices. London Mathematical Society Monographs, vol. 18. Academic Press Inc, London (1983)

    MATH  Google Scholar 

  4. Kalmbach, G.: Measures and Hilbert lattices. World Scientific, Singapore (1986)

    Book  Google Scholar 

  5. Svozil, K.: Quantum Logic. Springer Series in Discrete Mathematics and Theoretical Computer Science. Springer, Berlin (1998)

    Google Scholar 

  6. Piron, C.: Axiomatique quantique. Helv. Phys. Acta 37, 439–468 (1964)

    MathSciNet  MATH  Google Scholar 

  7. Amemiya, I., Araki, H.: A remark on Piron’s paper. Publ. Res. Inst. Math. Sci. Ser. A 2, 423–427 (1966/7)

  8. Wilbur, W.J.: On characterizing the standard quantum logics. Trans. Am. Math. Soc. 233, 265–282 (1977)

    Article  MathSciNet  Google Scholar 

  9. Solèr, M.P.: Characterization of Hilbert spaces by orthomodular spaces. Commun. Algebra 23(1), 219–243 (1995)

    Article  MathSciNet  Google Scholar 

  10. Stubbe, I., Van Steirteghem, B.: Propositional systems, Hilbert lattices and generalized Hilbert spaces. In: Handbook of Quantum Logic and Quantum Structures, pp. 477–523. Elsevier Sci. B. V., Amsterdam (2007). arXiv:0710.2098

  11. Megill, N.D., Pavičić, M.: Hilbert lattice equations. Ann. Henri Poincaré 10(7), 1335–1358 (2010)

    Article  MathSciNet  Google Scholar 

  12. Megill, N.: Quantum logic explorer home page. http://us.metamath.org/qlegif/mmql.html (2014)

  13. Mal’cev, A.I.: Algebraic systems. In: Smirnov, D., Taĭclin, M. (eds.) Posthumous Edition. Springer, New York (1973). Translated from the Russian by B. D. Seckler and A. P. Doohovskoy, Die Grundlehren der mathematischen Wissenschaften, Band 192

  14. Bravyi, S.: Efficient algorithm for a quantum analogue of 2-SAT. arXiv:quant-ph/0602108

  15. Liang, Y.-C., Spekkens, R.W., Wiseman, H.M.: Specker’s parable of the over-protective seer: a road to contextuality, nonlocality and complementarity. Phys. Rep. 506(1–2), 1–39 (2011)

    Article  MathSciNet  Google Scholar 

  16. Slofstra, W.: Tsirelson’s problem and an embedding theorem for groups arising from non-local games. J. Am. Math. Soc. Page to appear. arXiv:1606.03140

  17. Cleve, R., Liu, L., Slofstra, W.: Perfect commuting-operator strategies for linear system games. J. Math. Phys. 58(1), 012202 (2017). arXiv:1606.02278

    Article  MathSciNet  Google Scholar 

  18. Cleve, R., Mittal, R.: Characterization of binary constraint system games. In: Automata, Languages, and Programming, Lecture Notes in Computer Science, vol. 8572. Springer, Berlin (2014). arXiv:1209.2729

  19. Acín, A., Fritz, T., Leverrier, A., Sainz, A.B.: A combinatorial approach to nonlocality and contextuality. Commun. Math. Phys. 334(2), 533–628 (2015). arXiv:1212.4084

    Article  MathSciNet  Google Scholar 

  20. Lipshitz, L.: The undecidability of the word problems for projective geometries and modular lattices. Trans. Am. Math. Soc. 193, 171–180 (1974)

    Article  MathSciNet  Google Scholar 

  21. Sherif, M.A.E.H.: Decision problem for orthomodular lattices. Algebra Universalis 37(1), 70–76 (1997)

    Article  MathSciNet  Google Scholar 

  22. Herrmann, C.: On the equational theory of projection lattices of finite von Neumann factors. J. Symb. Log. 75(3), 1102–1110 (2010)

    Article  MathSciNet  Google Scholar 

  23. Herrmann, C., Ziegler, M.: Computational complexity of quantum satisfiability. J. ACM 63(2), 19 (2016)

    Article  MathSciNet  Google Scholar 

  24. Atserias, A., Kolaitis, P.G., Severini, S.: Generalized satisfiability problems via operator assignments (2017). arXiv:1704.01736

  25. Fritz. T.: Curious properties of free hypergraph c*-algebras. J. Oper. Theory. Page to appear. arXiv:1808.09220

  26. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151(3–4), 107–108 (1990)

    Article  MathSciNet  Google Scholar 

  27. Mermin, N.D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373 (1990)

    Article  MathSciNet  Google Scholar 

  28. Pedersen, G.K.: \(C^{\ast } \)-Algebras and their Automorphism Groups, London Mathematical Society Monographs, vol. 14. Academic Press, Cambridge (1979)

    Google Scholar 

  29. Fritz, T., Netzer, T., Thom, A.: Can you compute the operator norm? Proc. Am. Math. Soc. 142, 4265–4276 (2014). arXiv:1207.0975

    Article  MathSciNet  Google Scholar 

  30. Hodges, W.: Model Theory, Encyclopedia of Mathematics and Its Applications, vol. 42. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  31. Rédei, M.: Quantum Logic in Algebraic Approach. Kluwer Academic Publishers, Dordrecht (1998)

    Book  Google Scholar 

  32. Svozil, K.: Randomness and Undecidability in Physics. World Scientific Publishing Co., Inc., River Edge (1993)

    Book  Google Scholar 

Download references

Acknowledgements

We thank John Harding, Christian Herrmann, Ravi Kunjwal, Anthony Leverrier, Mladen Pavičić, Stefan Schmidt, William Slofstra, Rob Spekkens, Karl Svozil, Andreas Thom and Moritz Weber for discussions. Special thanks go to Christian Herrmann for copious help with the literature and useful feedback, and to William Slofstra for pointing out that Theorem 14 actually follows from the arguments used in an earlier version of this paper to prove a weaker result. Most of this paper was written while the author was with the Max Planck Institute for Mathematics in the Sciences in Leipzig, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Fritz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fritz, T. Quantum logic is undecidable. Arch. Math. Logic 60, 329–341 (2021). https://doi.org/10.1007/s00153-020-00749-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-020-00749-0

Keywords

Mathematics Subject Classification

Navigation