Skip to main content
Log in

On a class of maximality principles

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We study various classes of maximality principles, \(\mathrm {MP}(\kappa ,\Gamma )\), introduced by Hamkins (J Symb Log 68(2):527–550, 2003), where \(\Gamma \) defines a class of forcing posets and \(\kappa \) is an infinite cardinal. We explore the consistency strength and the relationship of \(\textsf {MP}(\kappa ,\Gamma )\) with various forcing axioms when \(\kappa \in \{\omega ,\omega _1\}\). In particular, we give a characterization of bounded forcing axioms for a class of forcings \(\Gamma \) in terms of maximality principles MP\((\omega _1,\Gamma )\) for \(\Sigma _1\) formulas. A significant part of the paper is devoted to studying the principle MP\((\kappa ,\Gamma )\) where \(\kappa \in \{\omega ,\omega _1\}\) and \(\Gamma \) defines the class of stationary set preserving forcings. We show that MP\((\kappa ,\Gamma )\) has high consistency strength; on the other hand, if \(\Gamma \) defines the class of proper forcings or semi-proper forcings, then by Hamkins (2003), MP\((\kappa ,\Gamma )\) is consistent relative to \(V=L\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Audrito, G., Viale, M.: Absoluteness via Resurrection. arXiv:1404.2111

  2. Bagaria, J.: Bounded forcing axioms as principles of generic absoluteness. Arch. Math. Log. 39(6), 393–401 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Claverie, B., Schindler, R.: Woodin’s axiom (*), bounded forcing axioms, and precipitous ideals on \(\omega _1\). J. Symb. Log. 77(2), 475–498 (2012)

    Article  MATH  Google Scholar 

  4. Cummings, J.: Iterated forcing and elementary embeddings. In: Handbook of Set Theory, pp. 775–883 (2010)

  5. Fuchs, G., Hamkins, J.D., Reitz, J.: Set-theoretic geology. Ann. Pure Appl. Log. 166(4), 464–501 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hamkins, J.D., Woodin, W.H.: The necessary maximality principle for ccc forcing is equiconsistent with a weakly compact cardinal. Math. Log. Q. 51(5), 493–498 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hamkins, J.D.: A simple maximality principle. J. Symb. Log. 68(2), 527–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hamkins, J.D., Johnstone, T.A.: Resurrection axioms and uplifting cardinals. Arch. Math. Log. 53(3–4), 463–485 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Larson, P.B.: Martin’s maximum and definability in \(H(\aleph _2)\). Ann. Pure Appl. Log. 156(1), 110–122 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Moore, J.T.: Set mapping reflection. J. Math. Log. 5(01), 87–97 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Schindler, R., Steel, J.R.: The Core Model Induction. http://math.berkeley.edu/~steel

  12. Schindler, R.: Woodin’s Axiom (*), or Martin’s Maximum, or Both. http://wwwmath.uni-muenster.de/u/rds

  13. Schindler, R.: Coding in K by reasonable forcing. Trans. Am. Math. Soc. 353, 479–489 (2001)

    Article  MATH  Google Scholar 

  14. Schindler, R.: Semi-proper forcing, remarkable cardinals, and bounded Martin’s maximum. Math. Log. Q. 50(6), 527–532 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Shelah, S.: Proper and Improper Forcing. Perspectives in Mathematical Logic, 2nd edn. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  16. Todorcevic, S.: Generic absoluteness and the continuum. Math. Res. Lett. 9(4), 465–472 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. Tsaprounis, K.: On resurrection axioms. J. Symb. Log. 80(2), 587–608 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Usuba, T.: The downward directed grounds hypothesis and very large cardinals (submitted for publication)

  19. Viale, M.: Category forcings, \( {MM}^{+++}\), and generic absoluteness for the theory of strong forcing axioms. J. Am. Math. Soc. 29(3), 675–728 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Viale, M.: Martin’s maximum revisited. Arch. Math. Log. 55(1–2), 295–317 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Woodin, W.H.: The Axiom of Determinacy, Forcing Axioms, and the Nonstationary Ideal, Volume 1 de Gruyter Series in Logic and Its Applications. Walter de Gruyter & Co., Berlin (2010)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Trang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikegami, D., Trang, N. On a class of maximality principles. Arch. Math. Logic 57, 713–725 (2018). https://doi.org/10.1007/s00153-017-0603-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-017-0603-2

Keywords

Mathematics Subject Classification

Navigation