Skip to main content
Log in

An order-theoretic characterization of the Howard–Bachmann-hierarchy

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

In this article we provide an intrinsic characterization of the famous Howard–Bachmann ordinal in terms of a natural well-partial-ordering by showing that this ordinal can be realized as a maximal order type of a class of generalized trees with respect to a homeomorphic embeddability relation. We use our calculations to draw some conclusions about some corresponding subsystems of second order arithmetic. All these subsystems deal with versions of light-face \(\varPi ^1_1\)-comprehension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becker, T., Weispfenning, V.: Gröbner bases—A Computational Approach to Commutative Algebra. Graduate Texts in Mathematics, vol. 141. Springer, New York (1993)

  2. Buchholz, W., Schütte, K.: Proof Theory of Impredicative Subsystems of Analysis. Studies in Proof Theory. Monographs, vol. 2. Bibliopolis, Naples (1988)

  3. Buchholz, W., Feferman, S., Pohlers, W., Sieg, W.: Iterated Inductive Definitions and Subsystems of Analysis: Recent Proof-Theoretical Studies. Lecture Notes in Mathematics, vol. 897. Springer, Berlin (1981)

  4. Cholak, P., Marcone, A., Solomon, R.: Reverse mathematics and the equivalence of definitions for well and better quasi-orders. J. Symb. Logic 69(3), 683–712 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Clote, P.: The metamathematics of Fraïssé’s order type conjecture. In: Recursion Theory Week (Oberwolfach, 1989), Lecture Notes in Mathematics, vol. 1432, pp. 41–56. Springer, Berlin (1990)

  6. de Jongh, D.H.J., Parikh, R.: Well-partial orderings and hierarchies. Nederl. Akad. Wetensch. Proc. Ser. A 80 = Indag. Math. 39(3), 195–207 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  7. Girard, J.Y.: Proof Theory and Logical Complexity, Studies in Proof Theory. Monographs, vol. 1. Bibliopolis, Naples (1987)

  8. Higman, G.: Ordering by divisibility in abstract algebras. Proc. Lond. Math. Soc. 3(2), 326–336 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  9. Hirst, J.L.: Reverse mathematics and ordinal exponentiation. Ann. Pure Appl. Logic 66(1), 1–18 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hirst, J.L.: Reverse mathematics and rank functions for directed graphs. Arch. Math. Logic 39(8), 569–579 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  11. Jäger, G., Strahm, T.: Bar induction and \(\omega \) model reflection. Ann. Pure Appl. Logic 97(1–3), 221–230 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kruskal, J.B.: The theory of well-quasi-ordering: a frequently discovered concept. J. Comb. Theory Ser. A 13, 297–305 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  13. Laver, R.: On Fraïssé’s order type conjecture. Ann. Math. 2(93), 89–111 (1971)

    Article  MATH  Google Scholar 

  14. Marcone, A.: On the logical strength of Nash–Williams’ theorem on transfinite sequences. In: Logic: from foundations to applications (Staffordshire, 1993), Oxford Sci. Publ., pp. 327–351. Oxford University Press, New York (1996)

  15. Pohlers, W.: Proof Theory, Lecture Notes in Mathematics, vol. 1407. Springer, Berlin (1989)

  16. Pohlers, W.: Proof Theory: The First Step into impredicativity (Universitext). Springer, Berlin (2009)

    MATH  Google Scholar 

  17. Rathjen, M., Weiermann, A.: Proof-theoretic investigations on Kruskal’s theorem. Ann. Pure Appl. Logic 60(1), 49–88 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Schmidt, D.: Well-Partial Orderings and Their Maximal Order Types. Habilitationsschrift, Heidelberg (1979)

    Google Scholar 

  19. Schütte, K.: Proof Theory. Springer, Berlin (1977). Translated from the revised German edition by J. N. Crossley, Grundlehren der Mathematischen Wissenschaften, Band 225

  20. Schütte, K., Simpson, S.G.: Ein in der reinen Zahlentheorie unbeweisbarer Satz über endliche Folgen von natürlichen Zahlen. Arch. Math. Logik Grundlag. 25(1–2), 75–89 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Simpson, S.G.: Nonprovability of certain combinatorial properties of finite trees. In: Harvey Friedman’s Research on the Foundations of Mathematics, Stud. Logic Found. Math., vol. 117, pp. 87–117. North-Holland, Amsterdam (1985)

  22. Simpson, S.G.: Subsystems of Second Order Arithmetic. Perspectives in Logic, 2nd edn. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

  23. Van der Meeren, J., Rathjen, M., Weiermann, A.: Well-partial-orderings and the big Veblen number. Arch. Math. Logic 54(1), 193–230 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Weiermann, A.: Proving termination for term rewriting systems. In: Computer science logic (Berne, 1991), Lecture Notes in Comput. Sci., vol. 626, pp. 419–428. Springer, Berlin (1992)

  25. Weiermann, A.: Bounds for the closure ordinals of essentially monotonic increasing functions. J. Symb. Logic 58(2), 664–671 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  26. Weiermann, A.: An order-theoretic characterization of the Schütte–Veblen-hierarchy. Math. Logic Q. 39(3), 367–383 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  27. Weiermann, A.: A computation of the maximal order type of the term ordering on finite multisets. In: Mathematical Theory and Computational Practice, Lecture Notes in Computer Science, vol. 5635, pp. 488–498. Springer, Berlin (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroen Van der Meeren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van der Meeren, J., Rathjen, M. & Weiermann, A. An order-theoretic characterization of the Howard–Bachmann-hierarchy. Arch. Math. Logic 56, 79–118 (2017). https://doi.org/10.1007/s00153-016-0515-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-016-0515-6

Keywords

Mathematics Subject Classification

Navigation