Skip to main content
Log in

PAC learning, VC dimension, and the arithmetic hierarchy

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We compute that the index set of PAC-learnable concept classes is m-complete \({\Sigma^{0}_{3}}\) within the set of indices for all concept classes of a reasonable form. All concept classes considered are computable enumerations of computable \({\Pi^{0}_{1}}\) classes, in a sense made precise here. This family of concept classes is sufficient to cover all standard examples, and also has the property that PAC learnability is equivalent to finite VC dimension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beros A.: Learning theory in the arithmetic hierarchy. J. Symbolic Logic 79, 908–927 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bishop C.M.: Pattern Recognition and Machine Learning. Information Science and Statistics. Springer, Berlin (2006)

    Google Scholar 

  3. Blumer A., Ehrenfeucht A., Haussler D., Warmuth M.K.: Learnability and the Vapnik-Chervonenkis dimension. J. ACM 36, 929–965 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Braverman M., Yampolsky M.: Computability of Julia Sets. No. 23 in Algorithms and Computation in Mathematics. Springer, Berlin (2009)

    Google Scholar 

  5. Calvert W.: The isomorphism problem for computable Abelian p-groups of bounded length. J. Symbolic Logic 70, 331–345 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Calvert W., Cenzer D., Harizanov V., Morozov A.: Effective categoricity of equivalence structures. Ann. Pure Appl. Logic 141, 61–78 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Calvert W., Cenzer D., Harizanov V., Morozov A.: \({{\Delta^{0}_{2}}}\)-categoricity of Abelian p-groups. Ann. Pure Appl. Logic 159, 187–197 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Calvert W., Harizanov V., Knight J.F., Miller S.: Index sets of computable structures. Algebra Logic 45, 306–325 (2006)

    Article  MathSciNet  Google Scholar 

  9. Cenzer, D.: \({{\Pi^{0}_{1}}}\) classes in computability theory. In: Handbook of Computability, no. 140 in Studies in Logic and the Foundations of Mathematics, pp. 37–85. Elsevier (1999)

  10. Cenzer D., Remmel J.: Index sets for \({\Pi^{0}_{1}}\) classes. Ann. Pure Appl. Logic 93, 3–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  11. Friend M., Goethe N.B., Harizanov V.: Induction, Algorithmic Learning Theory, and Philosophy, Logic, Epistemology, and the Unity of Science, vol. 9. Springer, Berlin (2007)

    Book  Google Scholar 

  12. Gold E.M.: Language identification in the limit. Inf. Control 10, 447–474 (1967)

    Article  MATH  Google Scholar 

  13. Goncharov S.S., Knight J.F.: Computable structure and non-structure theorems. Algebra Logic 41, 351–373 (2002)

    Article  MathSciNet  Google Scholar 

  14. Harizanov V., Stephan F.: On the learnability of vector spaces. J. Comput. Syst. Sci. 73, 109–122 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kearns M.J., Vazirani U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994)

    Google Scholar 

  16. Linial N., Mansour Y., Rivest R.L.: Results on learnability and the Vapnik-Chervonenkis dimension. Inf. Comput. 90, 33–49 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Melnikov, A.G., Nies, A.: The classification problem for compact computable metric spaces. In: The Nature of Computation: Logic, Algorithms, Applications, Lecture Notes in Computer Science, vol. 7921, pp. 320–328. Springer (2013)

  18. Russell S., Norvig P.: Artificial Intelligence, 3rd edn. Prentice Hall, New Jersey (2010)

    Google Scholar 

  19. Schaefer M.: Deciding the Vapnik-Chervonenkis dimension is \({{\Sigma^{P}_{3}}}\) -complete. J. Comput. Syst. Sci. 58, 177–182 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  20. Soare R.I.: Recursively Enumerable Sets and Degrees. Springer, Berlin (1987)

    Book  Google Scholar 

  21. Stephan F., Ventsov Y.: Learning algebraic structures from text. Theor. Comput. Sci. 268, 221–273 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Valiant L.G.: A theory of the learnable. Commun. ACM 27, 1134–1142 (1984)

    Article  MATH  Google Scholar 

  23. Vapnik V.N., Chervonenkis A.Y.: On the uniform convergence of relative frequencies of events to their probabilities. Theory Probab. Appl. 16, 264–280 (1971)

    Article  MATH  Google Scholar 

  24. Weihrauch K.: Computable Analysis. Texts in Theoretical Computer Science. Springer, Berlin (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wesley Calvert.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvert, W. PAC learning, VC dimension, and the arithmetic hierarchy. Arch. Math. Logic 54, 871–883 (2015). https://doi.org/10.1007/s00153-015-0445-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-015-0445-8

Keywords

Mathematics Subject Classification

Navigation