Skip to main content
Log in

Recursive drivable road detection with shadows based on two-camera systems

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper concerns the road reconstruction problem of on-road vehicles with shadows. To deal with the effects of shadows, images are transformed to the proposed illuminant invariant color space and are fused with raw images to obtain more details in both dark and bright regions. Then, the road region is reconstructed from a geometry point of view. Based on the two-view geometric model, the scene can be described by the projective parallax information with respect to a reference plane, which is the grounding plane of the vehicle in this paper. The road reconstruction is performed row-by-row recursively. For each row, a row-wise image registration method is used to estimate the parallax information, based on which height information with respect to the reference plane can be calculated. Based on the distributions of height information and image intensity, the road region is detected and is used to direct the image registration of the next row. This process stops when the road region is small enough and the entire road region is obtained. The proposed approach is general in the sense that it works with shadows for different road types and camera configurations. Experimental results are provided to show the effectiveness and robustness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Alvarez, J., Gevers, T., LeCun, Y., Lopez, A.: Road scene segmentation from a single image. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) Computer Vision ECCV 2012, Lecture Notes in Computer Science, pp. 376–389. Springer, Berlin (2012)

  2. Álvarez, J.M., López, A.M.: Road detection based on illuminant invariance. IEEE Trans. Intell. Transp. Syst. 12(1), 184–193 (2011)

    Article  Google Scholar 

  3. Álvarez, J.M., López, A.M., Gevers, T., Lumbreras, F.: Combining priors, appearance, and context for road detection. IEEE Trans. Intell. Transp. Syst. 15(3), 1168–1178 (2014)

    Article  Google Scholar 

  4. Arróspide, J., Salgado, L., Nieto, M., Mohedano, R.: Homography-based ground plane detection using a single on-board camera. IET Intell. Transp. Syst. 4(2), 149–160 (2010)

    Article  Google Scholar 

  5. Bar Hillel, A., Lerner, R., Levi, D., Raz, G.: Recent progress in road and lane detection: a survey. Mach. Vis. Appl. 25(3), 727–745 (2012)

    Article  Google Scholar 

  6. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (surf). Comput. Vis. Image Underst. 110(3), 346–359 (2008)

    Article  Google Scholar 

  7. Chen, J., Dixon, W.E., Dawson, D.M., McIntyre, M.: Homography-based visual servo tracking control of a wheeled mobile robot. IEEE Trans. Robot. 22(2), 406–415 (2006)

    Article  Google Scholar 

  8. Chen, J., Paris, S., Durand, F.: Real-time edge-aware image processing with the bilateral grid. In: ACM SIGGRAPH 2007 Papers, SIGGRAPH ’07. ACM, New York, NY, USA (2007). doi:10.1145/1275808.1276506

  9. Conrad, D., DeSouza, G.N.: Homography-based ground plane detection for mobile robot navigation using a modified EM algorithm. In: IEEE International Conference on Robotics and Automation, pp. 910–915. IEEE (2010)

  10. Corke, P., Paul, R., Churchill, W., Newman, P.: Dealing with shadows: capturing intrinsic scene appearance for image-based outdoor localisation. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2085–2092 (2013)

  11. Du, X., Tan, K.K.: Vision-based approach towards lane line detection and vehicle localization. Mach. Vis. Appl. 27(2), 175–191 (2015)

    Article  Google Scholar 

  12. Fritsch, J., Kuhnl, T., Geiger, A.: A new performance measure and evaluation benchmark for road detection algorithms. In: IEEE International Conference on Intelligent Transportation Systems, pp. 1693–1700. IEEE (2013)

  13. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3354–3361. IEEE (2012)

  14. Grossberg, M.D., Nayar, S.K.: Determining the camera response from images: What is knowable? IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1455–1467 (2003)

    Article  Google Scholar 

  15. Guo, R., Dai, Q., Hoiem, D.: Paired regions for shadow detection and removal. IEEE Trans. Pattern Anal. Mach. Intell. 35(12), 2956–2967 (2013)

    Article  Google Scholar 

  16. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  17. He, Y., Wang, H., Zhang, B.: Color-based road detection in urban traffic scenes. IEEE Trans. Intell. Transp. Syst. 5(4), 309–318 (2004)

    Article  Google Scholar 

  18. Heo, Y.S., Lee, K.M., Lee, S.U.: Robust stereo matching using adaptive normalized cross-correlation. IEEE Trans. Pattern Anal. Mach. Intell. 33(4), 807–822 (2011)

    Article  Google Scholar 

  19. Heo, Y.S., Lee, K.M., Lee, S.U.: Joint depth map and color consistency estimation for stereo images with different illuminations and cameras. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1094–1106 (2013)

    Article  Google Scholar 

  20. Hirschmüller, H.: Stereo processing by semiglobal matching and mutual information. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 328–341 (2008)

    Article  Google Scholar 

  21. Hua, C., Makihara, Y., Yagi, Y., Iwasaki, S., Miyagawa, K., Li, B.: Onboard monocular pedestrian detection by combining spatio-temporal hog with structure from motion algorithm. Mach. Vis. Appl. 26(2), 161–183 (2015)

    Article  Google Scholar 

  22. Kong, H., Audibert, J., Ponce, J.: General road detection from a single image. IEEE Trans. Image Process. 19(8), 2211–2220 (2010)

    Article  MathSciNet  Google Scholar 

  23. Labayrade, R., Aubert, D., Tarel, J.P.: Real time obstacle detection in stereovision on non flat road geometry through” v-disparity” representation. Proc. IEEE Intell. Veh. Symp. 2, 646–651 (2002)

    Google Scholar 

  24. Lalonde, J.F., Efros, A.A., Narasimhan, S.G.: Detecting ground shadows in outdoor consumer photographs. In: Proceedings of European Conference on Computer Vision, pp. 322–335 (2010)

  25. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel b-splines. IEEE Trans. Vis. Comput. Graph. 3(3), 228–244 (1997)

    Article  Google Scholar 

  26. Levi, D., Garnett, N., Fetaya, E.: Stixelnet—a deep convolutional network for obstacle detection and road segmentation. In: Proceedings of the British Machine Vision Conference (BMVC), pp. 109.1–109.12 (2015)

  27. Lin, C., Jiang, S., Pu, Y., Song, K.: Robust ground plane detection for obstacle avoidance of mobile robots using a monocular camera. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3706–3711 (2010)

  28. Liu, X., Xu, X., Dai, B.: Vision-based long-distance lane perception and front vehicle location for full autonomous vehicles on highway roads. J. Cent. South Univ. 19, 1454–1465 (2012)

    Article  Google Scholar 

  29. Maddern, W., Stewart, A., McManus, C., Upcroft, B., Churchill, W., Newman, P.: Illumination invariant imaging: applications in robust vision-based localisation, mapping and classification for autonomous vehicles. In: Proceedings of the Visual Place Recognition in Changing Environments Workshop, IEEE International Conference on Robotics and Automation (2014)

  30. Marchant, J.A., Onyango, C.M.: Shadow-invariant classification for scenes illuminated by daylight. JOSA A 17(11), 1952–1961 (2000)

    Article  Google Scholar 

  31. Moghadam, P., Member, S., Starzyk, J.A., Member, S., Wijesoma, W.S.: Fast vanishing-point detection in unstructured environments. IEEE Trans. Image Process. 21(1), 497–500 (2012)

    Article  MathSciNet  Google Scholar 

  32. Oniga, F., Nedevschi, S.: Processing dense stereo data using elevation maps: Road surface, traffic isle, and obstacle detection. IEEE Trans. Veh. Technol. 59(3), 1172–1182 (2010)

    Article  Google Scholar 

  33. Qu, S., Meng, C.: Statistical classification based fast drivable region detection for indoor mobile robot. Int. J. Humanoid Robot. 11(01), 1450010 (2014)

    Article  Google Scholar 

  34. Rodríguez Flórez, S.A., Frémont, V., Bonnifait, P., Cherfaoui, V.: Multi-modal object detection and localization for high integrity driving assistance. Mach. Vis. Appl. 25(3), 583–598 (2011)

    Article  Google Scholar 

  35. Šegvić, S., Brkić, K., Kalafatić, Z., Pinz, A.: Exploiting temporal and spatial constraints in traffic sign detection from a moving vehicle. Mach. Vis. Appl. 25(3), 649–665 (2011)

    Google Scholar 

  36. Shen, J., Yang, X., Jia, Y., Li, X.: Intrinsic images using optimization. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3481–3487. IEEE (2011)

  37. Shin, B., Xu, Z., Klette, R.: Visual lane analysis and higher-order tasks: a concise review. Mach. Vis. Appl. 25(6), 1519–1547 (2014)

    Article  Google Scholar 

  38. Shinzato, P.Y., Gomes, D., Wolf, D.F.: Road estimation with sparse 3d points from stereo data. In: IEEE International Conference on Intelligent Transportation Systems, pp. 1688–1693. IEEE (2014)

  39. Sivaraman, S., Trivedi, M.M.: Active learning for on-road vehicle detection: a comparative study. Mach. Vis. Appl. 25(3), 599–611 (2011)

    Article  Google Scholar 

  40. Tan, C., Hong, T., Chang, T., Shneier, M.: Color model-based real-time learning for road following. In: Proceedings of IEEE Conference on Intelligent Transportation Systems, pp. 939–944. IEEE (2006)

  41. Tian, J., Qi, X., Qu, L., Tang, Y.: New spectrum ratio properties and features for shadow detection. Pattern Recognit. 51, 85–96 (2015)

    Article  Google Scholar 

  42. Wang, Z., Kim, D.J., Behal, A.: Design of stable visual servoing under sensor and actuator constraints via a Lyapunov-based approach. IEEE Trans. Control Syst. Technol. 20(6), 1575–1582 (2012)

    Article  Google Scholar 

  43. Wu, M., Lam, S.K., Srikanthan, T.: Nonparametric technique based high-speed road surface detection. IEEE Trans. Intell. Transp. Syst. 16(2), 874–884 (2015)

    Google Scholar 

  44. Wu, P., Chang, C., Lin, C.H.: Lane-mark extraction for automobiles under complex conditions. Pattern Recognit. 47(8), 2756–2767 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Chen.

Additional information

This work is supported by National Natural Science Foundation of China (61433013) and the Recruitment Program of Global Youth Experts.

Appendix: two-view geometry development

Appendix: two-view geometry development

As shown in Fig. 3, the ray from the origin of \({\mathcal {C}}\) to \(O_i\) intersects with the plane \(\pi \) at the point \(O_{\pi i}\). Denote the coordinates of \(O_{\pi i}\) with respect to \({\mathcal {C}}\) and \({\mathcal {C}}'\) as \(\bar{m}_i \triangleq \begin{bmatrix} x_i&y_i&z_i \end{bmatrix}^\mathrm{T} \in {\mathbb {R}}^3\) and \(\bar{m}'_i \triangleq \begin{bmatrix} x'_i&y'_i&z'_i \end{bmatrix}^\mathrm{T} \in {\mathbb {R}}^3\), respectively, which can be related by Chen et al. [7]:

$$\begin{aligned} \bar{m}_{\pi i}'=H \bar{m}_{\pi i}, \end{aligned}$$
(25)

where H is the Euclidean homography defined as:

$$\begin{aligned} H \triangleq R+x_f \frac{n^T}{d} . \end{aligned}$$
(26)

Construct a plane \(\pi '\) through point \(O_i\) parallel to \(\pi \), and its distance to the plane \(\pi \) is \(D_i\). Similar to (25), the Euclidean homography relationship of the coordinates of point \(O_i\) with respect to \({\mathcal {C}}\) and \({\mathcal {C}}'\) induced by plane \(\pi '\) is given by

$$\begin{aligned} \bar{m}'_i=H' \bar{m}_i = \left( H+x_f \frac{D_i n^T}{d(d-D_i)} \right) \bar{m}_{i}. \end{aligned}$$
(27)

Since \(n^T \bar{m}_i=d-D_i\), then (27) can be rewritten as:

$$\begin{aligned} \bar{m}'_i=H \bar{m}_i + \frac{D_i}{d} x_f . \end{aligned}$$
(28)

The normalized coordinates of \(\bar{m}_i,\bar{m}'_i\) are denoted as \(m_i\triangleq \frac{\bar{m}_i}{z_i},m'_i\triangleq \frac{\bar{m}'_i}{z'_i}\), respectively, and the projected image points \(p,p'\) are derived using the pinhole model [16]:

$$\begin{aligned} p_i=Am_i, p'_i=A'm'_i . \end{aligned}$$
(29)

Denoting \(G \triangleq A' H A^{-1}\) as the projective homography, the geometric model (8) is obtained using (28) and (29).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, B., Chen, J. & Zhang, K. Recursive drivable road detection with shadows based on two-camera systems. Machine Vision and Applications 28, 509–523 (2017). https://doi.org/10.1007/s00138-017-0858-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-017-0858-y

Keywords

Navigation