Skip to main content
Log in

Gait recognition from corrupted silhouettes: a robust statistical approach

  • Original Paper
  • Published:
Machine Vision and Applications Aims and scope Submit manuscript

Abstract

This paper introduces a method based on robust statistics to build reliable gait signatures from averaging silhouette descriptions, mainly when gait sequences are affected by severe and persistent defects. The term robust refers to the ability of reducing the impact of silhouette defects (outliers) on the average gait pattern, while taking advantage of clean silhouette regions. An extensive experimental framework was defined based on injecting three types of realistic defects (salt and pepper noise, static occlusion, and dynamic occlusion) to clean gait sequences, both separately in an easy setting and jointly in a hard setting. The robust approach was compared against two other operation modes: (1) simple mean (weak baseline) and (2) defect exclusion (strong benchmark). Three gait representation methods based on silhouette averaging were used: Gait Energy Image (GEI), Gradient Histogram Energy Image (GHEI), and the joint use of GEI and HOG descriptors. Quality of gait signatures was assessed by their discriminant power in a large number of gait recognition tasks. Nonparametric statistical tests were applied on recognition results, searching for significant differences between operation modes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. This scheme admits a series of half cycles.

  2. In the case of GEI, \(v(\cdot )\) computes normalized Euclidean distances between vectors of grayscale pixel values, thus \(v(\cdot )\in [0,255]\), while in GHEI and GEI \(+\) HoG, \(v(\cdot )\) measures absolute differences between features normalized in [0, 1].

  3. This is a particular case of having at least four cycles.

  4. Note that each series includes results from both defective and clean scenarios together.

  5. Performance curves from the other two methods are pretty similar to those from GEI showed in this section.

References

  1. Alcalá-Fdez, J., Fernandez, A., Luengo, J., Derrac, J., Garca, S., Snchez, L., Herrera, F.: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework. J. Mult. Valued Logic Soft Comput. 17, 255–287 (2011)

    Google Scholar 

  2. Barnett, V., Lewis, T.: Outliers in Statistical Data, vol. 3. Wiley, New York (1994)

    MATH  Google Scholar 

  3. Black, M., Rangarajan, A.: On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int. J. Comput. Vis. 19(1), 57–91 (1996)

    Article  Google Scholar 

  4. Chen, C., Liang, J., Zhao, H., Hu, H., Tian, J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit. Lett. 30(11), 977–984 (2009)

    Article  Google Scholar 

  5. Gross, R., Shi, J.: The CMU motion of body (MoBo) database. Technical Report CMU-RI-TR-01-18. Robotics Institute, Carnegie Mellon University, Pittsburgh, PA (2001)

  6. Han, J., Bhanu, B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. 28(2), 316–322 (2006)

    Article  Google Scholar 

  7. Hofmann, M., Rigoll, G.: Exploiting gradient histograms for gait-based person identification. In: IEEE Image Processing, pp. 4171–4175 (2013)

  8. Hofmann, M., Sural, S., Rigoll, G.: Gait recognition in presence of occlusion: a new dataset and baseline algorithms. In: WSCG, pp. 99–104 (2011)

  9. Hofmann, M., Wolf, D., Rigoll, G.: Identification and reconstruction of complete gait cycles for person identification in crowded scenes. In: VISAPP, pp. 594–597 (2011)

  10. Huber, P.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  11. Jin, W., She, M., Nahavandi, S., Kouzani, A.: A review of vision-based gait recognition methods for human identification. In: DICTA, pp. 320–327 (2010)

  12. Lee, L., Dalley, G., Tieu, K.: Learning pedestrian models for silhouette refinement. In: IEEE International Conference on Computer Vision, vol. 1, pp. 663–670 (2003)

  13. Liang, W., Tieniu, T., Huazhong, N., Weiming, H.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

  14. Liu, J., Zheng, N., Xiong, L.: Silhouette quality quantification for gait sequence analysis and recognition. Signal Process. 89(7), 1417–1427 (2009)

    Article  MATH  Google Scholar 

  15. Liu, Z., Sarkar, S.: Effect of silhouette quality on hard problems in gait recognition. IEEE Trans. Syst. Man Cybern. B 35(2), 170–183 (2005)

    Article  Google Scholar 

  16. Makihara, Y., Mannami, H., Tsuji, A., Hossain, M., Sugiura, K., Mori, A., Yagi, Y.: The OU-ISIR gait database comprising the treadmill dataset. IPSJ Trans. Comput. Vis. Appl. 4, 53–62 (2012)

    Article  Google Scholar 

  17. Maronna, R.A., Martin, D.R., Yohai, V.J.: Robust Statistics: Theory and Methods. Wiley, New York (2006)

    Book  MATH  Google Scholar 

  18. Martín-Félez, R., Ortells, J., Mollineda, R.A.: Exploring the effects of video length on gait recognition. In: International Conference on Pattern Recognition, pp. 3411–3414 (2012)

  19. Martín-Félez, R., Xiang, T.: Gait recognition by ranking. In: ECCV Lecture Notes on Computer Science, vol. 7572, pp. 328–341 (2012)

  20. Ortells, J., Martín-Félez, R., Mollineda, R.A.: A complexity measure of gait perception. In: Pattern Recognition and Image Analysis, Lecture Notes on Computer Science, vol. 7887, pp. 492–499 (2013)

  21. Rey, W.: Introduction to Robust and Quasi-Robust Statistical Methods. Springer, Heidelberg (1983)

    Book  MATH  Google Scholar 

  22. Roy, A., Chattopadhyay, P., Sural, S., Mukherjee, J., Rigoll, G.: Modelling, synthesis and characterization of occlusion in videos. IET Comput. Vis. 9(6), 821–830 (2015)

    Article  Google Scholar 

  23. Roy, A., Sural, S., Mukherjee, J., Rigoll, G.: Occlusion detection and gait silhouette reconstruction from degraded scenes. Signal Image Video Process. 5(4), 415–430 (2011)

    Article  Google Scholar 

  24. Sarkar, S., Phillips, P., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The humanId gait challenge problem: data sets, performance and analysis. IEEE Trans. Pattern Anal. 27(2), 162–177 (2005)

    Article  Google Scholar 

  25. Schafer, R.C.: Clinical Biomechanics: Musculoskeletal Actions and Reactions. Williams & Wilkins, Philadelphia (1987)

    Google Scholar 

  26. Shu, G., Dehghan, A., Oreifej, O., Hand, E., Shah, M.: Part-based multiple-person tracking with partial occlusion handling. In: Proceedings on CVPR IEEE, pp. 1815–1821 (2012)

  27. Sivapalan, S., Chen, D., Denman, S., Sridharan, S., Fookes, C.: Histogram of weighted local directions for gait recognition. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 125–130 (2013)

  28. Tukey, J.W.: Exploratory Data Analysis. Addison-Wesley, Boston (1977)

    MATH  Google Scholar 

  29. Whytock, T., Belyaev, A., Robertson, N.: Improving robustness and precision in GEI \(+\) HOG action recognition. In: Advances in Visual Computing, Lecture Notes in Computer Science, vol. 8033, pp. 119–128 (2013)

  30. Whytock, T., Belyaev, A., Robertson, N.: On covariate factor detection and removal for robust gait recognition. Mach. Vis. Appl. 26(5), 661–674 (2015)

    Article  Google Scholar 

  31. Wilcoxon, F.: Individual comparisons by ranking methods. Biom. Bull. 1(6), 80–83 (1945)

    Article  Google Scholar 

  32. Wu, B., Nevatia, R.: Detection and tracking of multiple, partially occluded humans by Bayesian combination of edgelet based part detectors. Int. J. Comput. Vis. 75(2), 247–266 (2007)

    Article  Google Scholar 

  33. Yu, S., Tan, D., Huang, K., Tan, T.: Reducing the effect of noise on human contour in gait recognition. In: Advances in Biometrics, Lecture Notes in Computer Science, vol. 4642, pp. 338–346 (2007)

  34. Yu, S., Tan, D., Tan, T.: A framework for evaluating the effect of view angle, clothing and carrying condition on gait recognition. In: International Conference on Pattern Recognition, pp. 441–444 (2006)

  35. Zhao, G., Cui, L., Li, H.: Gait recognition using fractal scale. Pattern Anal. Appl. 10(3), 235–246 (2007)

    Article  MathSciNet  Google Scholar 

  36. Zhou, Z., Prugel-Bennett, A., Damper, R.: A Bayesian framework for extracting human gait using strong prior knowledge. IEEE Trans. Pattern Anal. 28(11), 1738–1752 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by the grants P1-1B2012-22 and PREDOC/2012/05 from Universitat Jaume I, PROMETEOII/2014/062 from Generalitat Valenciana, and TIN2013-46522-P from Spanish Ministry of Economy and Competitiveness.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Ortells.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ortells, J., Mollineda, R.A., Mederos, B. et al. Gait recognition from corrupted silhouettes: a robust statistical approach. Machine Vision and Applications 28, 15–33 (2017). https://doi.org/10.1007/s00138-016-0798-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00138-016-0798-y

Keywords

Navigation