Skip to main content

Advertisement

Log in

Challenges for a broad international implementation of the current severe community-acquired pneumonia guidelines

  • Narrative Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Severe community-acquired pneumonia (sCAP) remains one of the leading causes of admission to the intensive care unit, thus consuming a large share of resources and is associated with high mortality rates worldwide. The evidence generated by clinical studies in the last decade was translated into recommendations according to the first published guidelines focusing on severe community-acquired pneumonia. Despite the advances proposed by the present guidelines, several challenges preclude the prompt implementation of these diagnostic and therapeutic measures. The present article discusses the challenges for the broad implementation of the sCAP guidelines and proposes solutions when applicable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Troeger C, Blacker B, Khalil IA et al (2018) Estimates of the global, regional, and national morbidity, mortality, and aetiologies of lower respiratory infections in 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Infect Dis 18:1191–1210. https://doi.org/10.1016/S1473-3099(18)30310-4

    Article  Google Scholar 

  2. Martin-Loeches I, Torres A, Nagavci B et al (2023) ERS/ESICM/ESCMID/ALAT guidelines for the management of severe community-acquired pneumonia. Intensive Care Med 49:615–632. https://doi.org/10.1007/s00134-023-07033-8

    Article  PubMed  Google Scholar 

  3. Kerneis S, Visseaux B, Armand-Lefevre L, Timsit J-F (2021) Molecular diagnostic methods for pneumonia: how can they be applied in practice? Curr Opin Infect Dis 34:118–125. https://doi.org/10.1097/QCO.0000000000000713

    Article  CAS  PubMed  Google Scholar 

  4. Hanson KE, Azar MM, Banerjee R et al (2020) Molecular testing for acute respiratory tract infections: clinical and diagnostic recommendations from the IDSA’s diagnostics committee. Clin Infect Dis 71:2744–2751. https://doi.org/10.1093/cid/ciaa508

    Article  CAS  PubMed  Google Scholar 

  5. Jain S, Self WH, Wunderink RG, et al (2015) Community-Acquired Pneumonia Requiring Hospitalization among U.S. Adults. New Engl J Med. https://doi.org/10.1056/NEJMoa1500245

  6. Okeke IN, Ihekweazu C (2021) The importance of molecular diagnostics for infectious diseases in low-resource settings. Nat Rev Microbiol 19:547–548. https://doi.org/10.1038/s41579-021-00598-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Okeke IN, Feasey N, Parkhill J et al (2020) Leapfrogging laboratories: the promise and pitfalls of high-tech solutions for antimicrobial resistance surveillance in low-income settings. BMJ Glob Health 5:e003622. https://doi.org/10.1136/bmjgh-2020-003622

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lim C, Ashley EA, Hamers RL et al (2021) Surveillance strategies using routine microbiology for antimicrobial resistance in low- and middle-income countries. Clin Microbiol Infect 27:1391–1399. https://doi.org/10.1016/j.cmi.2021.05.037

    Article  PubMed  PubMed Central  Google Scholar 

  9. Ombelet S, Ronat J-B, Walsh T et al (2018) Clinical bacteriology in low-resource settings: today’s solutions. Lancet Infect Dis 18:e248–e258. https://doi.org/10.1016/S1473-3099(18)30093-8

    Article  PubMed  Google Scholar 

  10. Rochwerg B, Brochard L, Elliott MW et al (2017) Official ERS/ATS clinical practice guidelines: noninvasive ventilation for acute respiratory failure. Eur Respir J 50:1602426. https://doi.org/10.1183/13993003.02426-2016

    Article  PubMed  Google Scholar 

  11. Lemiale V, Mokart D, Resche-Rigon M et al (2015) Effect of noninvasive ventilation vs oxygen therapy on mortality among immunocompromised patients with acute respiratory failure: a randomized clinical trial. JAMA 314:1711. https://doi.org/10.1001/jama.2015.12402

    Article  CAS  PubMed  Google Scholar 

  12. Coudroy R, Frat J-P, Ehrmann S et al (2022) High-flow nasal oxygen alone or alternating with non-invasive ventilation in critically ill immunocompromised patients with acute respiratory failure: a randomised controlled trial. Lancet Respir Med 10:641–649. https://doi.org/10.1016/S2213-2600(22)00096-0

    Article  CAS  PubMed  Google Scholar 

  13. Arabi YM, Al-Dorzi HM, Aldekhyl S et al (2023) Long-term outcomes of patients with COVID-19 treated with helmet noninvasive ventilation or usual respiratory support: follow-up study of the Helmet-COVID randomized clinical trial. Intensive Care Med 49:302–312. https://doi.org/10.1007/s00134-023-06981-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Grieco DL, Menga LS, Cesarano M et al (2021) Effect of helmet noninvasive ventilation vs high-flow nasal oxygen on days free of respiratory support in patients with COVID-19 and moderate to severe hypoxemic respiratory failure: the HENIVOT randomized clinical trial. JAMA 325:1731. https://doi.org/10.1001/jama.2021.4682

    Article  CAS  PubMed  Google Scholar 

  15. Perkins GD, Ji C, Connolly BA et al (2022) Effect of noninvasive respiratory strategies on intubation or mortality among patients with acute hypoxemic respiratory failure and COVID-19: the RECOVERY-RS randomized clinical trial. JAMA 327:546. https://doi.org/10.1001/jama.2022.0028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Frat J-P, Thille AW, Mercat A et al (2015) High-flow oxygen through nasal cannula in acute hypoxemic respiratory failure. N Engl J Med 372:2185–2196. https://doi.org/10.1056/NEJMoa1503326

    Article  CAS  PubMed  Google Scholar 

  17. Azoulay E, Lemiale V, Mokart D et al (2018) Effect of high-flow nasal oxygen vs standard oxygen on 28-day mortality in immunocompromised patients with acute respiratory failure: the HIGH randomized clinical trial. JAMA 320:2099. https://doi.org/10.1001/jama.2018.14282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Frat J-P, Quenot J-P, Badie J et al (2022) Effect of high-flow nasal cannula oxygen vs standard oxygen therapy on mortality in patients with respiratory failure due to COVID-19: the SOHO-COVID randomized clinical trial. JAMA 328:1212. https://doi.org/10.1001/jama.2022.15613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ospina-Tascón GA, Calderón-Tapia LE, García AF et al (2021) Effect of high-flow oxygen therapy vs conventional oxygen therapy on invasive mechanical ventilation and clinical recovery in patients With severe COVID-19: a randomized clinical trial. JAMA 326:2161. https://doi.org/10.1001/jama.2021.20714

    Article  CAS  PubMed  Google Scholar 

  20. Metlay JP, Waterer GW, Long AC et al (2019) Diagnosis and treatment of adults with community-acquired pneumonia. an official clinical practice guideline of the American Thoracic Society and Infectious Diseases Society of America. Am J Respir Crit Care Med 200:e45–e67. https://doi.org/10.1164/rccm.201908-1581ST

    Article  PubMed  PubMed Central  Google Scholar 

  21. Waterer G (2018) Empiric antibiotics for community-acquired pneumonia: a macrolide and a beta-lactam please! Respirology 23:450–451. https://doi.org/10.1111/resp.13248

    Article  PubMed  Google Scholar 

  22. Reyes LF, Garcia E, Ibáñez-Prada ED et al (2023) Impact of macrolide treatment on long-term mortality in patients admitted to the ICU due to CAP: a targeted maximum likelihood estimation and survival analysis. Crit Care 27:212. https://doi.org/10.1186/s13054-023-04466-x

    Article  PubMed  PubMed Central  Google Scholar 

  23. Arnold FW, Lopardo G, Wiemken TL et al (2018) Macrolide therapy is associated with lower mortality in community-acquired bacteraemic pneumonia. Respir Med 140:115–121. https://doi.org/10.1016/j.rmed.2018.05.020

    Article  PubMed  Google Scholar 

  24. Ikuta KS, Swetschinski LR, Robles Aguilar G et al (2022) Global mortality associated with 33 bacterial pathogens in 2019: a systematic analysis for the Global Burden of Disease Study 2019. The Lancet 400:2221–2248. https://doi.org/10.1016/S0140-6736(22)02185-7

    Article  Google Scholar 

  25. Pletz MW, Blasi F, Chalmers JD et al (2020) International perspective on the new 2019 American Thoracic Society/Infectious Diseases Society of America Community-Acquired Pneumonia Guideline. Chest 158:1912–1918. https://doi.org/10.1016/j.chest.2020.07.089

    Article  CAS  PubMed  Google Scholar 

  26. Carugati M, Aliberti S, Reyes LF et al (2018) Microbiological testing of adults hospitalised with community-acquired pneumonia: an international study. ERJ Open Res 4:00096–02018. https://doi.org/10.1183/23120541.00096-2018

    Article  PubMed  PubMed Central  Google Scholar 

  27. Peyrani P, Wiemken TL, Metersky ML et al (2018) The order of administration of macrolides and beta-lactams may impact the outcomes of hospitalized patients with community-acquired pneumonia: results from the community-acquired pneumonia organization. Infect Dis 50:13–20. https://doi.org/10.1080/23744235.2017.1350881

    Article  CAS  Google Scholar 

  28. Pirracchio R, Annane D, Waschka AK, et al (2023) Patient-level meta-analysis of low-dose hydrocortisone in adults with septic shock. NEJM Evidence. https://doi.org/10.1056/EVIDoa2300034

  29. Dequin P-F, Meziani F, Quenot J-P et al (2023) Hydrocortisone in severe community-acquired pneumonia. N Engl J Med 388:1931–1941. https://doi.org/10.1056/NEJMoa2215145

    Article  CAS  PubMed  Google Scholar 

  30. Meduri GU, Shih M-C, Bridges L et al (2022) Low-dose methylprednisolone treatment in critically ill patients with severe community-acquired pneumonia. Intensive Care Med 48:1009–1023. https://doi.org/10.1007/s00134-022-06684-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Siemieniuk RAC, Meade MO, Alonso-Coello P et al (2015) Corticosteroid therapy for patients hospitalized with community-acquired pneumonia: a systematic review and meta-analysis. Ann Intern Med 163:519–528. https://doi.org/10.7326/M15-0715

    Article  PubMed  Google Scholar 

  32. Arulkumaran N, Khpal M, Tam K et al (2020) Effect of antibiotic discontinuation strategies on mortality and infectious complications in critically Ill septic patients: a meta-analysis and trial sequential analysis*. Crit Care Med 48:757–764. https://doi.org/10.1097/CCM.0000000000004267

    Article  PubMed  Google Scholar 

  33. Jensen JU, Hein L, Lundgren B, et al (2011) Procalcitonin-guided interventions against infections to increase early appropriate antibiotics and improve survival in the intensive care unit: a randomized trial: Crit Care Med 39:2048–2058. https://doi.org/10.1097/CCM.0b013e31821e8791

  34. Kamat IS, Ramachandran V, Eswaran H et al (2020) Procalcitonin to distinguish viral from bacterial pneumonia: a systematic review and meta-analysis. Clin Infect Dis 70:538–542. https://doi.org/10.1093/cid/ciz545

    Article  CAS  PubMed  Google Scholar 

  35. Oliveira CF, Botoni FA, Oliveira CRA et al (2013) Procalcitonin versus C-reactive protein for guiding antibiotic therapy in sepsis: a randomized trial*. Crit Care Med 41:2336–2343. https://doi.org/10.1097/CCM.0b013e31828e969f

    Article  CAS  PubMed  Google Scholar 

  36. Chu DC, Mehta AB, Walkey AJ (2017) Practice patterns and outcomes associated with procalcitonin use in critically Ill patients with sepsis. Clin Infect Dis 64:1509–1515. https://doi.org/10.1093/cid/cix179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Cawcutt KA, Fey PD, Kalil AC (2017) Respiratory pathogen panels in the hospital: good or unnecessary? Curr Opin Infect Dis 30:226–230. https://doi.org/10.1097/QCO.0000000000000357

    Article  PubMed  Google Scholar 

  38. Cawcutt K, Kalil AC (2017) Pneumonia with bacterial and viral coinfection. Curr Opin Crit Care 23:385–390. https://doi.org/10.1097/MCC.0000000000000435

    Article  PubMed  Google Scholar 

  39. Gentilotti E, De Nardo P, Cremonini E et al (2022) Diagnostic accuracy of point-of-care tests in acute community-acquired lower respiratory tract infections. A systematic review and meta-analysis. Clin Microbiol Infect 28:13–22. https://doi.org/10.1016/j.cmi.2021.09.025

    Article  PubMed  Google Scholar 

  40. Basnayake TL, Waterer GW (2015) Rapid diagnostic tests for defining the cause of community-acquired pneumonia. Curr Opin Infect Dis 28:185–192. https://doi.org/10.1097/QCO.0000000000000148

    Article  PubMed  Google Scholar 

  41. Kalil AC, Thomas PG (2019) Influenza virus-related critical illness: pathophysiology and epidemiology. Crit Care 23:258. https://doi.org/10.1186/s13054-019-2539-x

    Article  PubMed  PubMed Central  Google Scholar 

  42. Amstutz A, Speich B, Mentré F et al (2023) Effects of remdesivir in patients hospitalised with COVID-19: a systematic review and individual patient data meta-analysis of randomised controlled trials. Lancet Respir Med 11:453–464. https://doi.org/10.1016/S2213-2600(22)00528-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Martin-Loeches I, Garduno A, Povoa P, Nseir S (2022) Choosing antibiotic therapy for severe community-acquired pneumonia. Curr Opin Infect Dis 35:133–139. https://doi.org/10.1097/QCO.0000000000000819

    Article  CAS  PubMed  Google Scholar 

  44. Kalil AC, Metersky ML, Klompas M et al (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the infectious diseases society of America and the American Thoracic Society. Clin Infect Dis 63:e61–e111. https://doi.org/10.1093/cid/ciw353

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kreitmann L, Vasseur M, Jermoumi S et al (2023) Relationship between immunosuppression and intensive care unit-acquired colonization and infection related to multidrug-resistant bacteria: a prospective multicenter cohort study. Intensive Care Med 49:154–165. https://doi.org/10.1007/s00134-022-06954-0

    Article  CAS  PubMed  Google Scholar 

  46. Tillotson G, Lodise T, Classi P, et al (2020) Antibiotic treatment failure and associated outcomes among adult patients with community-acquired pneumonia in the outpatient setting: a real-world US insurance claims database study. Open Forum Infect Dis 7:ofaa065. https://doi.org/10.1093/ofid/ofaa065

  47. Webb BJ, Sorensen J, Mecham I, et al (2019) Antibiotic use and outcomes after implementation of the drug resistance in pneumonia score in ED patients with community-onset pneumonia. Chest 156:843–851. https://doi.org/10.1016/j.chest.2019.04.093

  48. Maruyama T, Fujisawa T, Ishida T et al (2019) A therapeutic strategy for all pneumonia patients: a 3-year prospective multicenter cohort study using risk factors for multidrug-resistant pathogens to select initial empiric therapy. Clin Infect Dis 68:1080–1088. https://doi.org/10.1093/cid/ciy631

    Article  CAS  PubMed  Google Scholar 

  49. Lindenauer PK, Strait KM, Grady JN et al (2018) Variation in the diagnosis of aspiration pneumonia and association with hospital pneumonia outcomes. Annals ATS 15:562–569. https://doi.org/10.1513/AnnalsATS.201709-728OC

    Article  Google Scholar 

  50. Dickson RP, Erb-Downward JR, Huffnagle GB (2015) Homeostasis and its disruption in the lung microbiome. Am J Physiol Lung Cell Mol Physiol 309:L1047–L1055. https://doi.org/10.1152/ajplung.00279.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Noguchi S, Yatera K, Kato T et al (2017) Impact of the number of aspiration risk factors on mortality and recurrence in community-onset pneumonia. CIA 12:2087–2094. https://doi.org/10.2147/CIA.S150499

    Article  Google Scholar 

  52. Liu C-L, Shau W-Y, Wu C-S, Lai M-S (2012) Angiotensin-converting enzyme inhibitor/angiotensin II receptor blockers and pneumonia risk among stroke patients. J Hypertens 30:2223–2229. https://doi.org/10.1097/HJH.0b013e328357a87a

    Article  CAS  PubMed  Google Scholar 

  53. Lee HW, Min J, Park J et al (2015) Clinical impact of early bronchoscopy in mechanically ventilated patients with aspiration pneumonia. Respirology 20:1115–1122. https://doi.org/10.1111/resp.12590

    Article  PubMed  Google Scholar 

  54. Mandell LA, Niederman MS (2019) Aspiration pneumonia. N Engl J Med 380:651–663. https://doi.org/10.1056/NEJMra1714562

    Article  CAS  PubMed  Google Scholar 

  55. Cabana MD, Rand CS, Powe NR, et al (2024) Why don’t physicians follow clinical practice guidelines? A framework for improvement

  56. Póvoa P, Coelho L, Dal-Pizzol F et al (2023) How to use biomarkers of infection or sepsis at the bedside: guide to clinicians. Intensive Care Med 49:142–153. https://doi.org/10.1007/s00134-022-06956-y

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mart MF, Sendagire C, Ely EW et al (2022) Oxygen as an essential medicine. Crit Care Clin 38:795–808. https://doi.org/10.1016/j.ccc.2022.06.010

    Article  PubMed  PubMed Central  Google Scholar 

  58. Rabello L, Conceição C, Ebecken K, et al (2015) Management of severe community-acquired pneumonia in Brazil: a secondary analysis of an international survey. Revista Brasileira de Terapia Intensiva. https://doi.org/10.5935/0103-507X.20150010

  59. Turner HC, Hao NV, Yacoub S et al (2019) Achieving affordable critical care in low-income and middle-income countries. BMJ Glob Health 4:e001675. https://doi.org/10.1136/bmjgh-2019-001675

    Article  PubMed  PubMed Central  Google Scholar 

  60. Saharman YR, Karuniawati A, Severin JA, Verbrugh HA (2021) Infections and antimicrobial resistance in intensive care units in lower-middle income countries: a scoping review. Antimicrob Resist Infect Control 10:22. https://doi.org/10.1186/s13756-020-00871-x

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cimiotti JP, Becker ER, Li Y et al (2022) Association of registered nurse staffing with mortality risk of medicare beneficiaries hospitalized with sepsis. JAMA Health Forum 3:e221173. https://doi.org/10.1001/jamahealthforum.2022.1173

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pickens CI, Gao CA, Bodner J, et al (2023) An adjudication protocol for severe pneumonia. Open Forum Infect Dis 10:ofad336. https://doi.org/10.1093/ofid/ofad336

  63. Torres A, Chalmers JD, Dela Cruz CS et al (2019) Challenges in severe community-acquired pneumonia: a point-of-view review. Intensive Care Med 45:159–171. https://doi.org/10.1007/s00134-019-05519-y

    Article  PubMed  PubMed Central  Google Scholar 

  64. Pickens CI, Wunderink RG (2022) Novel and rapid diagnostics for common infections in the critically Ill patient. Clin Chest Med 43:401–410. https://doi.org/10.1016/j.ccm.2022.04.003

    Article  PubMed  Google Scholar 

  65. Monard C, Pehlivan J, Auger G et al (2020) Multicenter evaluation of a syndromic rapid multiplex PCR test for early adaptation of antimicrobial therapy in adult patients with pneumonia. Crit Care 24:434. https://doi.org/10.1186/s13054-020-03114-y

    Article  PubMed  PubMed Central  Google Scholar 

  66. Sharon L, Baliga S, Shah J et al (2016) Fluorescent In Situ Hybridization (FISH) for the detection and differentiation of mycobacterium tuberculosis and NTM in sputum and culture. Int J Infect Dis 45:411. https://doi.org/10.1016/j.ijid.2016.02.878

    Article  Google Scholar 

  67. Pan T, Tan R, Qu H et al (2019) Next-generation sequencing of the BALF in the diagnosis of community-acquired pneumonia in immunocompromised patients. J Infect 79:61–74. https://doi.org/10.1016/j.jinf.2018.11.005

    Article  PubMed  Google Scholar 

  68. Zacharioudakis IM, Zervou FN, Shehadeh F, Mylonakis E (2019) Cost-effectiveness of molecular diagnostic assays for the therapy of severe sepsis and septic shock in the emergency department. PLoS ONE 14:e0217508. https://doi.org/10.1371/journal.pone.0217508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rabello LSCF, Pitrowsky MT, Soares M et al (2011) Novel biomarkers in severe community-acquired pneumonia. Revista Brasileira de terapia intensiva 23:499–506

    Article  PubMed  Google Scholar 

Download references

Funding

JIFS is partly supported by individual research grants from CNPq and FAPERJ (National and regional governmental funding agencies for science development in Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge I. F. Salluh.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salluh, J.I.F., Póvoa, P., Beane, A. et al. Challenges for a broad international implementation of the current severe community-acquired pneumonia guidelines. Intensive Care Med 50, 526–538 (2024). https://doi.org/10.1007/s00134-024-07381-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-024-07381-z

Keywords

Navigation