Skip to main content
Log in

Mechanical circulatory support for cardiogenic shock: a network meta-analysis of randomized controlled trials and propensity score-matched studies

  • Systematic Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

Cardiogenic shock is associated with high mortality. In refractory shock, it is unclear if mechanical circulatory support (MCS) devices improve survival. We conducted a network meta-analysis to determine which MCS devices confers greatest benefit.

Methods

We searched MEDLINE, Embase, and Scopus databases through 27 August 2023 for relevant randomized controlled trials (RCTs) and propensity score-matched studies (PSMs). We conducted frequentist network meta-analysis, investigating mortality (either 30 days or in-hospital) as the primary outcome. We assessed risk of bias (Cochrane risk of bias 2.0 tool/Newcastle–Ottawa Scale) and as sensitivity analysis reconstructed survival data from published survival curves for a one-stage unadjusted individual patient data (IPD) meta-analysis using a stratified Cox model.

Results

We included 38 studies (48,749 patients), mostly reporting on patients with Society for Cardiovascular Angiography and Intervention shock stages C–E cardiogenic shock. Compared with no MCS, extracorporeal membrane oxygenation with intra-aortic balloon pump (ECMO-IABP; network odds ratio [OR]: 0.54, 95% confidence interval (CI): 0.33–0.86, moderate certainty) was associated with lower mortality. There were no differences in mortality between ECMO, IABP, microaxial ventricular assist device (mVAD), ECMO-mVAD, centrifugal VAD, or mVAD-IABP and no MCS (all very low certainty). Our one-stage IPD survival meta-analysis based on the stratified Cox model found only ECMO-IABP was associated with lower mortality (hazard ratio, HR, 0.55, 95% CI 0.46–0.66).

Conclusion

In patients with cardiogenic shock, ECMO-IABP may reduce mortality, while other MCS devices did not reduce mortality. However, this must be interpreted within the context of inter-study heterogeneity and limited certainty of evidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in the published studies and their supplementary information files.

References

  1. Berg DD, Bohula EA, van Diepen S, Katz JN, Alviar CL, Baird-Zars VM, Barnett CF, Barsness GW, Burke JA, Cremer PC, Cruz J, Daniels LB, DeFilippis AP, Haleem A, Hollenberg SM, Horowitz JM, Keller N, Kontos MC, Lawler PR, Menon V, Metkus TS, Ng J, Orgel R, Overgaard CB, Park JG, Phreaner N, Roswell RO, Schulman SP, Jeffrey Snell R, Solomon MA, Ternus B, Tymchak W, Vikram F, Morrow DA (2019) Epidemiology of shock in contemporary cardiac intensive care units. Circ Cardiovasc Qual Outcomes 12:e005618

    Article  PubMed  Google Scholar 

  2. Chioncel O, Parissis J, Mebazaa A, Thiele H, Desch S, Bauersachs J, Harjola V-P, Antohi E-L, Arrigo M, Ben Gal T, Celutkiene J, Collins SP, DeBacker D, Iliescu VA, Jankowska E, Jaarsma T, Keramida K, Lainscak M, Lund LH, Lyon AR, Masip J, Metra M, Miro O, Mortara A, Mueller C, Mullens W, Nikolaou M, Piepoli M, Price S, Rosano G, Vieillard-Baron A, Weinstein JM, Anker SD, Filippatos G, Ruschitzka F, Coats AJS, Seferovic P (2020) Epidemiology, pathophysiology and contemporary management of cardiogenic shock—a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 22:1315–1341

    Article  PubMed  Google Scholar 

  3. Elgendy IY, Van Spall HGC, Mamas MA (2020) Cardiogenic shock in the setting of acute myocardial infarction. Circulation 13:e009034

    PubMed  Google Scholar 

  4. Vahdatpour C, Collins D, Goldberg S (2019) Cardiogenic shock. J Am Heart Assoc 8:e011991

    Article  PubMed  PubMed Central  Google Scholar 

  5. Benenati S, Toma M, Canale C, Vergallo R, Bona RD, Ricci D, Canepa M, Crimi G, Santini F, Ameri P, Porto I (2022) Mechanical circulatory support in patients with cardiogenic shock not secondary to cardiotomy: a network meta-analysis. Heart Fail Rev 27:927–934

    Article  PubMed  Google Scholar 

  6. Shaefi S, O’Gara B, Kociol RD, Joynt K, Mueller A, Nizamuddin J, Mahmood E, Talmor D, Shahul S (2015) Effect of cardiogenic shock hospital volume on mortality in patients with cardiogenic shock. J Am Heart Assoc 4:e001462

    Article  PubMed  PubMed Central  Google Scholar 

  7. Puymirat E, Fagon JY, Aegerter P, Diehl JL, Monnier A, Hauw-Berlemont C, Boissier F, Chatellier G, Guidet B, Danchin N, Aissaoui N (2017) Cardiogenic shock in intensive care units: evolution of prevalence, patient profile, management and outcomes, 1997–2012. Eur J Heart Fail 19:192–200

    Article  PubMed  Google Scholar 

  8. Khera R, Secemsky EA, Wang Y, Desai NR, Krumholz HM, Maddox TM, Shunk KA, Virani SS, Bhatt DL, Curtis J, Yeh RW (2020) Revascularization practices and outcomes in patients with multivessel coronary artery disease who presented with acute myocardial infarction and cardiogenic shock in the US, 2009–2018. JAMA Intern Med 180:1317–1327

    Article  PubMed  Google Scholar 

  9. Ng R, Yeghiazarians Y (2013) Post myocardial infarction cardiogenic shock: a review of current therapies. J Intensive Care Med 28:151–165

    Article  PubMed  Google Scholar 

  10. Osman M, Syed M, Patibandla S, Sulaiman S, Kheiri B, Shah MK, Bianco C, Balla S, Patel B (2021) Fifteen-year trends in incidence of cardiogenic shock hospitalization and in-hospital mortality in the United States. J Am Heart Assoc 10:e021061

    Article  PubMed  PubMed Central  Google Scholar 

  11. Telukuntla KS, Estep JD (2020) Acute mechanical circulatory support for cardiogenic shock. Methodist Debakey Cardiovasc J 16:27–35

    Article  PubMed  PubMed Central  Google Scholar 

  12. González-Pacheco H, Manzur-Sandoval D, Gopar-Nieto R, Álvarez-Sangabriel A, Martínez-Sánchez C, Eid-Lidt G, Altamirano-Castillo A, Mendoza-García S, Briseño-Cruz JL, Azar-Manzur F, Araiza-Garaygordobil D, Sierra-Lara D, Jiménez-Rodríguez GM, Lazcano-Díaz EA, Baranda-Tovar F, Valencia-Älvarez JS, Cutz-Ijchajchal MA, Penagos-Cordon JC, Morejon-Barragán P, Arias-Mendoza A (2021) Cardiogenic shock among patients with and without acute myocardial infarction in a Latin American country: a single-institution study. Glob Heart 16:78

    Article  PubMed  PubMed Central  Google Scholar 

  13. O’Connor CM, Gattis WA, Uretsky BF, Adams KF Jr, McNulty SE, Grossman SH, McKenna WJ, Zannad F, Swedberg K, Gheorghiade M, Califf RM (1999) Continuous intravenous dobutamine is associated with an increased risk of death in patients with advanced heart failure: insights from the Flolan International Randomized Survival Trial (FIRST). Am Heart J 138:78–86

    Article  CAS  PubMed  Google Scholar 

  14. Masiero G, Cardaioli F, Rodinò G, Tarantini G (2022) When to achieve complete revascularization in infarct-related cardiogenic shock. J Clin Med 11:3116

    Article  PubMed  PubMed Central  Google Scholar 

  15. Samsky MD, Morrow DA, Proudfoot AG, Hochman JS, Thiele H, Rao SV (2021) Cardiogenic shock after acute myocardial infarction: a review. JAMA 326:1840–1850

    Article  PubMed  PubMed Central  Google Scholar 

  16. Tarvasmäki T, Lassus J, Varpula M, Sionis A, Sund R, Køber L, Spinar J, Parissis J, Banaszewski M, Silva Cardoso J, Carubelli V, Di Somma S, Mebazaa A, Harjola VP (2016) Current real-life use of vasopressors and inotropes in cardiogenic shock—adrenaline use is associated with excess organ injury and mortality. Crit Care 20:208

    Article  PubMed  PubMed Central  Google Scholar 

  17. Werdan K, Gielen S, Ebelt H, Hochman JS (2014) Mechanical circulatory support in cardiogenic shock. Eur Heart J 35:156–167

    Article  CAS  PubMed  Google Scholar 

  18. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, Group ESCSD (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  19. Basir MB, Schreiber TL, Grines CL, Dixon SR, Moses JW, Maini BS, Khandelwal AK, Ohman EM, O’Neill WW (2017) Effect of early initiation of mechanical circulatory support on survival in cardiogenic shock. Am J Cardiol 119:845–851

    Article  PubMed  Google Scholar 

  20. Hajjar LA, Teboul J-L (2019) Mechanical circulatory support devices for cardiogenic shock: state of the art. Crit Care 23:76

    Article  PubMed  PubMed Central  Google Scholar 

  21. Atti V, Narayanan MA, Patel B, Balla S, Siddique A, Lundgren S, Velagapudi P (2022) A comprehensive review of mechanical circulatory support devices. Heart Int 16:37–48

    Article  PubMed  PubMed Central  Google Scholar 

  22. Salter BS, Gross CR, Weiner MM, Dukkipati SR, Serrao GW, Moss N, Anyanwu AC, Burkhoff D, Lala A (2023) Temporary mechanical circulatory support devices: practical considerations for all stakeholders. Nat Rev Cardiol 20:263–277

    Article  PubMed  Google Scholar 

  23. Møller JE, Sionis A, Aissaoui N, Ariza A, Belohlavek J, De Backer D, Färber G, Gollmann-Tepeköylu C, Mebazaa A, Price S, Swol J, Thiele H, Hassager C (2023) Step by step daily management of short-term mechanical circulatory support for cardiogenic shock in adults in the intensive cardiac care unit. A clinical consensus statement of the Association for Acute Cardio Vascular Care (ACVC) of the ESC, the European Society of Intensive Care Medicine (ESICM), the European branch of the Extracorporeal Life Support Organization (EuroELSO) and the European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J Acute Cardiovasc Care 12(7):475–485

    Article  PubMed  Google Scholar 

  24. Thiele H, Zeymer U, Neumann FJ, Ferenc M, Olbrich HG, Hausleiter J, Richardt G, Hennersdorf M, Empen K, Fuernau G, Desch S, Eitel I, Hambrecht R, Fuhrmann J, Böhm M, Ebelt H, Schneider S, Schuler G, Werdan K (2012) Intraaortic balloon support for myocardial infarction with cardiogenic shock. N Engl J Med 367:1287–1296

    Article  CAS  PubMed  Google Scholar 

  25. Alushi B, Douedari A, Froehlig G, Knie W, Wurster TH, Leistner DM, Stahli BE, Mochmann HC, Pieske B, Landmesser U, Krackhardt F, Skurk C (2019) Impella versus IABP in acute myocardial infarction complicated by cardiogenic shock. Open Heart 6:e000987

    Article  PubMed  PubMed Central  Google Scholar 

  26. Thakkar S, Patel HP, Kumar A, Tan BEX, Arora S, Patel S, Doshi R, Depta JP, Kalra A, Dani SS, Deshmukh A, Badheka A, Widmer RJ, Mamas MA, Rihal CS, Girotra S, Panaich SS (2021) Outcomes of Impella compared with intra-aortic balloon pump in ST-elevation myocardial infarction complicated by cardiogenic shock. Am Heart J Plus 12:100067

    Google Scholar 

  27. Lemor A, Hosseini Dehkordi SH, Basir MB, Villablanca PA, Jain T, Koenig GC, Alaswad K, Moses JW, Kapur NK, O’Neill W (2020) Impella versus extracorporeal membrane oxygenation for acute myocardial infarction cardiogenic shock. Cardiovasc Revasc Med 21:1465–1471

    Article  PubMed  Google Scholar 

  28. Schurtz G, Rousse N, Saura O, Balmette V, Vincent F, Lamblin N, Porouchani S, Verdier B, Puymirat E, Robin E, Van Belle E, Vincentelli A, Aissaoui N, Delhaye C, Delmas C, Cosenza A, Bonello L, Juthier F, Moussa MD, Lemesle G (2021) IMPELLA(®) or extracorporeal membrane oxygenation for left ventricular dominant refractory cardiogenic shock. J Clin Med 10(4):759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Khalid Y, Dasu N, Dasu K, Suga H (2021) Impella versus tandemheart in cardiogenic shock nationwide database analysis 2017. J Am Coll Cardiol 77:818–818

    Article  Google Scholar 

  30. Schwartz BG, Ludeman DJ, Mayeda GS, Kloner RA, Economides C, Burstein S (2012) Treating refractory cardiogenic shock with the tandemheart and impella devices: a single center experience. Cardiol Res 3:54–66

    PubMed  PubMed Central  Google Scholar 

  31. Vallabhajosyula S, O’Horo JC, Antharam P, Ananthaneni S, Vallabhajosyula S, Stulak JM, Eleid MF, Dunlay SM, Gersh BJ, Rihal CS, Barsness GW (2018) Concomitant intra-aortic balloon pump use in cardiogenic shock requiring veno-arterial extracorporeal membrane oxygenation. Circ Cardiovasc Interv 11:e006930

    Article  PubMed  Google Scholar 

  32. Rios SA, Bravo CA, Weinreich M, Olmedo W, Villablanca P, Villela MA, Ramakrishna H, Hirji S, Robles OA, Mahato P, Gluud C, Bhatt DL, Jorde UP (2018) Meta-analysis and trial sequential analysis comparing percutaneous ventricular assist devices versus intra-aortic balloon pump during high-risk percutaneous coronary intervention or cardiogenic shock. Am J Cardiol 122:1330–1338

    Article  PubMed  Google Scholar 

  33. Li Y, Yan S, Gao S, Liu M, Lou S, Liu G, Ji B, Gao B (2019) Effect of an intra-aortic balloon pump with venoarterial extracorporeal membrane oxygenation on mortality of patients with cardiogenic shock: a systematic review and meta-analysis†. Eur J Cardiothorac Surg 55:395–404

    Article  PubMed  Google Scholar 

  34. Ouweneel DM, Eriksen E, Sjauw KD, van Dongen IM, Hirsch A, Packer EJ, Vis MM, Wykrzykowska JJ, Koch KT, Baan J, de Winter RJ, Piek JJ, Lagrand WK, de Mol BA, Tijssen JG, Henriques JP (2017) Percutaneous mechanical circulatory support versus intra-aortic balloon pump in cardiogenic shock after acute myocardial infarction. J Am Coll Cardiol 69:278–287

    Article  PubMed  Google Scholar 

  35. Thiele H, Zeymer U, Akin I, Behnes M, Rassaf T, Mahabadi AA, Lehmann R, Eitel I, Graf T, Seidler T, Schuster A, Skurk C, Duerschmied D, Clemmensen P, Hennersdorf M, Fichtlscherer S, Voigt I, Seyfarth M, John S, Ewen S, Linke A, Tigges E, Nordbeck P, Bruch L, Jung C, Franz J, Lauten P, Goslar T, Feistritzer H-J, Pöss J, Kirchhof E, Ouarrak T, Schneider S, Desch S, Freund A (2023) Extracorporeal life support in infarct-related cardiogenic shock. New Eng J Med 389(14):1286–1297

    Article  CAS  PubMed  Google Scholar 

  36. Banning AS, Sabate M, Orban M, Gracey J, López-Sobrino T, Massberg S, Kastrati A, Bogaerts K, Adriaenssens T, Berry C, Erglis A, Haine S, Myrmel T, Patel S, Buera I, Sionis A, Vilalta V, Yusuff H, Vrints C, Adlam D, Flather M, Gershlick AH (2023) Venoarterial extracorporeal membrane oxygenation or standard care in patients with cardiogenic shock complicating acute myocardial infarction: the multicentre, randomised EURO SHOCK trial. EuroIntervention 19(6):482–492

    Article  PubMed  Google Scholar 

  37. Zhang Q, Han Y, Sun S, Zhang C, Liu H, Wang B, Wei S (2022) Mortality in cardiogenic shock patients receiving mechanical circulatory support: a network meta-analysis. BMC Cardiovasc Disord 22:48

    Article  PubMed  PubMed Central  Google Scholar 

  38. Karatolios K, Chatzis G, Markus B, Luesebrink U, Ahrens H, Divchev D, Syntila S, Jerrentrup A, Schieffer B (2021) Comparison of mechanical circulatory support with venoarterial extracorporeal membrane oxygenation or Impella for patients with cardiogenic shock: a propensity-matched analysis. Clin Res Cardiol 110:1404–1411

    Article  PubMed  Google Scholar 

  39. Kim Y, Shapero K, Ahn SS, Goldsweig AM, Desai N, Altin SE (2022) Outcomes of mechanical circulatory support for acute myocardial infarction complicated by cardiogenic shock. Catheter Cardiovasc Interv 99:658–663

    Article  PubMed  Google Scholar 

  40. Low CJW, Ling RR, Lau MPXL, Liu NSH, Tan M, Tan CS, Lim SL, Rochwerg B, Combes A, Brodie D, Shekar K, Price S, MacLaren G, Ramanathan K (2023) 22: Mechanical circulatory support for cardiogenic shock: a network meta-analysis of randomised controlled trials and propensity score matched studies. ASAIO J 69(Suppl_3):2

  41. Hutton B, Salanti G, Caldwell DM, Chaimani A, Schmid CH, Cameron C, Ioannidis JPA, Straus S, Thorlund K, Jansen JP, Mulrow C, Catalá-López F, Gøtzsche PC, Dickersin K, Boutron I, Altman DG, Moher D (2015) The PRISMA extension statement for reporting of systematic reviews incorporating network meta-analyses of health care interventions: checklist and explanations. Ann Intern Med 162:777–784

    Article  PubMed  Google Scholar 

  42. Wan X, Wang W, Liu J, Tong T (2014) Estimating the sample mean and standard deviation from the sample size, median, range and/or interquartile range. BMC Med Res Methodol 14:135

    Article  PubMed  PubMed Central  Google Scholar 

  43. Guyot P, Ades AE, Ouwens MJNM, Welton NJ (2012) Enhanced secondary analysis of survival data: reconstructing the data from published Kaplan-Meier survival curves. BMC Med Res Methodol 12:9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, Cates CJ, Cheng H-Y, Corbett MS, Eldridge SM, Emberson JR, Hernán MA, Hopewell S, Hróbjartsson A, Junqueira DR, Jüni P, Kirkham JJ, Lasserson T, Li T, McAleenan A, Reeves BC, Shepperd S, Shrier I, Stewart LA, Tilling K, White IR, Whiting PF, Higgins JPT (2019) RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ 366:l4898

    Article  PubMed  Google Scholar 

  45. Deeks JJ, Dinnes J, D’Amico R, Sowden AJ, Sakarovitch C, Song F, Petticrew M, Altman DG (2003) Evaluating non-randomised intervention studies. Health Technol Assess 7:1–173

    Article  Google Scholar 

  46. Brignardello-Petersen R, Bonner A, Alexander PE, Siemieniuk RA, Furukawa TA, Rochwerg B, Hazlewood GS, Alhazzani W, Mustafa RA, Murad MH, Puhan MA, Schünemann HJ, Guyatt GH (2018) Advances in the GRADE approach to rate the certainty in estimates from a network meta-analysis. J Clin Epidemiol 93:36–44

    Article  PubMed  Google Scholar 

  47. Brignardello-Petersen R, Florez ID, Izcovich A, Santesso N, Hazlewood G, Alhazanni W, Yepes-Nuñez JJ, Tomlinson G, Schünemann HJ, Guyatt GH (2020) GRADE approach to drawing conclusions from a network meta-analysis using a minimally contextualised framework. BMJ 371:m3900

    Article  PubMed  Google Scholar 

  48. Brignardello-Petersen R, Mustafa RA, Siemieniuk RAC, Murad MH, Agoritsas T, Izcovich A, Schünemann HJ, Guyatt GH (2019) GRADE approach to rate the certainty from a network meta-analysis: addressing incoherence. J Clin Epidemiol 108:77–85

    Article  PubMed  Google Scholar 

  49. Guyatt G, Oxman AD, Akl EA, Kunz R, Vist G, Brozek J, Norris S, Falck-Ytter Y, Glasziou P, DeBeer H, Jaeschke R, Rind D, Meerpohl J, Dahm P, Schünemann HJ (2011) GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J Clin Epidemiol 64:383–394

    Article  PubMed  Google Scholar 

  50. Guyatt GH, Oxman AD, Kunz R, Woodcock J, Brozek J, Helfand M, Alonso-Coello P, Glasziou P, Jaeschke R, Akl EA, Norris S, Vist G, Dahm P, Shukla VK, Higgins J, Falck-Ytter Y, Schünemann HJ (2011) GRADE guidelines: 7. Rating the quality of evidence–inconsistency. J Clin Epidemiol 64:1294–1302

    Article  PubMed  Google Scholar 

  51. Puhan MA, Schünemann HJ, Murad MH, Li T, Brignardello-Petersen R, Singh JA, Kessels AG, Guyatt GH (2014) A GRADE Working Group approach for rating the quality of treatment effect estimates from network meta-analysis. Br Med J 349:g5630

    Article  Google Scholar 

  52. Santesso N, Glenton C, Dahm P, Garner P, Akl EA, Alper B, Brignardello-Petersen R, Carrasco-Labra A, De Beer H, Hultcrantz M, Kuijpers T, Meerpohl J, Morgan R, Mustafa R, Skoetz N, Sultan S, Wiysonge C, Guyatt G, Schünemann HJ (2020) GRADE guidelines 26: informative statements to communicate the findings of systematic reviews of interventions. J Clin Epidemiol 119:126–135

    Article  PubMed  Google Scholar 

  53. Borzecki AM, Christiansen CL, Chew P, Loveland S, Rosen AK (2010) Comparison of in-hospital versus 30-day mortality assessments for selected medical conditions. Med Care 48:1117–1121

    Article  PubMed  Google Scholar 

  54. Greenland S, Robins JM (1985) Estimation of a common effect parameter from sparse follow-up data. Biometrics 41:55–68

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  55. Robins J, Breslow N, Greenland S (1986) Estimators of the Mantel-Haenszel variance consistent in both sparse data and large-strata limiting models. Biometrics 42:311–323

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  56. Rücker G (2012) Network meta-analysis, electrical networks and graph theory. Res Synth Methods 3:312–324

    Article  PubMed  Google Scholar 

  57. Rücker G, Schwarzer G (2014) Reduce dimension or reduce weights? Comparing two approaches to multi-arm studies in network meta-analysis. Stat Med 33:4353–4369

    Article  MathSciNet  PubMed  Google Scholar 

  58. Higgins JP, Jackson D, Barrett JK, Lu G, Ades AE, White IR (2012) Consistency and inconsistency in network meta-analysis: concepts and models for multi-arm studies. Res Synth Methods 3:98–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Schwarzer G, Carpenter J, Rücker G (2015) Meta-Analysis with R.

  60. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lu G, Ades AE (2006) Assessing evidence inconsistency in mixed treatment comparisons. J Am Stat Assoc 101:447–459

    Article  MathSciNet  CAS  Google Scholar 

  62. Altman DG, Bland JM (2003) Interaction revisited: the difference between two estimates. BMJ 326:219

    Article  PubMed  PubMed Central  Google Scholar 

  63. Altman DG (1998) Confidence intervals for the number needed to treat. BMJ 317:1309–1312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Richard DR, Sofia D, Sarah D, Jayne FT, Lesley AS, Orestis E, David MP (2023) Using individual participant data to improve network meta-analysis projects. BMJ Evid-Based Med 28:197

    Article  Google Scholar 

  65. O’Quigley J, Stare J (2002) Proportional hazards models with frailties and random effects. Stat Med 21:3219–3233

    Article  PubMed  Google Scholar 

  66. Sharma K, Joshi D, Charaniya R, Patel K, Panwar J, Thakkar H, Mahajan P, Singh KK (2022) Does Intra-Aortic Balloon pump (IABP) improve hemodynamics in Asian Indian patients with Acute Coronary Syndrome with cardiogenic Shock? (DIASTASIS study). Heart Vessels Transplant 6(2):75–83

    Article  Google Scholar 

  67. Lang CN, Kaier K, Zotzmann V, Stachon P, Pottgiesser T, von zurMuehlen C, Zehender M, Duerschmied D, Schmid B, Bode C, Wengenmayer T, Staudacher DL (2021) Cardiogenic shock: incidence, survival and mechanical circulatory support usage 2007–2017-insights from a national registry. Clin Res Cardiol 110:1421–1430

    Article  PubMed  Google Scholar 

  68. McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, Burri H, Butler J, Čelutkienė J, Chioncel O, Cleland JGF, Coats AJS, Crespo-Leiro MG, Farmakis D, Gilard M, Heymans S, Hoes AW, Jaarsma T, Jankowska EA, Lainscak M, Lam CSP, Lyon AR, McMurray JJV, Mebazaa A, Mindham R, Muneretto C, Francesco Piepoli M, Price S, Rosano GMC, Ruschitzka F, Kathrine Skibelund A, Group ESD (2021) 2021 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: Developed by the Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) With the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 42:3599–3726

    Article  CAS  PubMed  Google Scholar 

  69. Ng WL, Tan SR, Ling RR, Tan CS, Mitra S, Ramanathan K (2021) The use of impella in cardiogenic shock: a systematic review and meta-analysis. J Am Coll Cardiol 77:589–589

    Article  Google Scholar 

  70. Panuccio G, Neri G, Macrì LM, Salerno N, De Rosa S, Torella D (2022) Use of Impella device in cardiogenic shock and its clinical outcomes: a systematic review and meta-analysis. Int J Cardiol Heart Vasc 40:101007

    PubMed  PubMed Central  Google Scholar 

  71. Ahmad Y, Sen S, Shun-Shin MJ, Ouyang J, Finegold JA, Al-Lamee RK, Davies JER, Cole GD, Francis DP (2015) Intra-aortic balloon pump therapy for acute myocardial infarction: a meta-analysis. JAMA Intern Med 175:931–939

    Article  PubMed  Google Scholar 

  72. Thiele H, Freund A, Gimenez MR, de Waha-Thiele S, Akin I, Pöss J, Feistritzer HJ, Fuernau G, Graf T, Nef H, Hamm C, Böhm M, Lauten A, Schulze PC, Voigt I, Nordbeck P, Felix SB, Abel P, Baldus S, Laufs U, Lenk K, Landmesser U, Skurk C, Pieske B, Tschöpe C, Hennersdorf M, Wengenmayer T, Preusch M, Maier LS, Jung C, Kelm M, Clemmensen P, Westermann D, Seidler T, Schieffer B, Rassaf T, Mahabadi AA, Vasa-Nicotera M, Meincke F, Seyfarth M, Kersten A, Rottbauer W, Boekstegers P, Muellenbach R, Dengler T, Kadel C, Schempf B, Karagiannidis C, Hopf HB, Lehmann R, Bufe A, Baumanns S, Öner A, Linke A, Sedding D, Ferrari M, Bruch L, Goldmann B, John S, Möllmann H, Franz J, Lapp H, Lauten P, Noc M, Goslar T, Oerlecke I, Ouarrak T, Schneider S, Desch S, Zeymer U (2021) Extracorporeal life support in patients with acute myocardial infarction complicated by cardiogenic shock—design and rationale of the ECLS-SHOCK trial. Am Heart J 234:1–11

    Article  PubMed  Google Scholar 

  73. Banning AS, Adriaenssens T, Berry C, Bogaerts K, Erglis A, Distelmaier K, Guagliumi G, Haine S, Kastrati A, Massberg S, Orban M, Myrmel T, Vuylsteke A, Alfonso F, Van de Werf F, Verheugt F, Flather M, Sabaté M, Vrints C, Gershlick AH (2021) Veno-arterial extracorporeal membrane oxygenation (ECMO) in patients with cardiogenic shock: rationale and design of the randomised, multicentre, open-label EURO SHOCK trial. EuroIntervention 16:e1227–e1236

    Article  PubMed  PubMed Central  Google Scholar 

  74. Brunner S, Guenther SPW, Lackermair K, Peterss S, Orban M, Boulesteix AL, Michel S, Hausleiter J, Massberg S, Hagl C (2019) Extracorporeal life support in cardiogenic shock complicating acute myocardial infarction. J Am Coll Cardiol 73:2355–2357

    Article  PubMed  Google Scholar 

  75. Ostadal P, Rokyta R, Karasek J, Kruger A, Vondrakova D, Janotka M, Naar J, Smalcova J, Hubatova M, Hromadka M, Volovar S, Seyfrydova M, Jarkovsky J, Svoboda M, Linhart A, Belohlavek J (2023) Extracorporeal membrane oxygenation in the therapy of cardiogenic shock: results of the ECMO-CS randomized clinical trial. Circulation 147:454–464

    Article  CAS  PubMed  Google Scholar 

  76. Barbaro RP, Odetola FO, Kidwell KM, Paden ML, Bartlett RH, Davis MM, Annich GM (2015) Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry. Am J Respir Crit Care Med 191:894–901

    Article  PubMed  PubMed Central  Google Scholar 

  77. Scatola A, Singh A, Singh K, Singh N, Meraj P (2019) Effect of time from cardiogenic shock to initiation of complete cardiovascular support on survival: “shock to support time.” J Heart Lung Transplant 38:S177

    Article  Google Scholar 

  78. Kalampokas N, Sipahi NF, Aubin H, Akhyari P, Petrov G, Albert A, Westenfeld R, Lichtenberg A, Saeed D (2021) Postcardiotomy veno-arterial extracorporeal membrane oxygenation: Does the cannulation technique influence the outcome? Front Cardiovasc Med 8(658412)

  79. Zeymer U, Freund A, Hochadel M, Ostadal P, Belohlavek J, Rokyta R, Massberg S, Brunner S, Lüsebrink E, Flather M, Adlam D, Bogaerts K, Banning A, Sabaté M, Akin I, Jobs A, Schneider S, Desch S, Thiele H, Venoarterial extracorporeal membrane oxygenation in patients with infarct-related cardiogenic shock: an individual patient data meta-analysis of randomised trials. The Lancet 402(10410):1338–1346

  80. Cevasco M, Takayama H, Ando M, Garan AR, Naka Y, Takeda K (2019) Left ventricular distension and venting strategies for patients on venoarterial extracorporeal membrane oxygenation. J Thorac Dis 11:1676–1683

    Article  PubMed  PubMed Central  Google Scholar 

  81. Rao P, Sabe M, Revisiting VA-ECMO in infarct-related cardiogenic shock. The Lancet 402(10410):1302–1303

  82. Aggarwal D, Bhatia K, Lopez P, Bohra C, Joshi A, Daibes J, Mahmood K, Fox A (2022) Left ventricular unloading with Impella versus IABP in patients on VA-ECMO for cardiogenic shock. Eur Heart J 43:ehac544.1106

    Article  Google Scholar 

  83. Moustafa A, Khan MS, Saad M, Siddiqui S, Eltahawy E (2022) Impella support versus intra-aortic balloon pump in acute myocardial infarction complicated by cardiogenic shock: a meta-analysis. Cardiovasc Revasc Med 34:25–31

    Article  PubMed  Google Scholar 

  84. Nakajima T, Tanaka Y, Fischer I, Kotkar K, Damiano RJ Jr, Moon MR, Masood MF, Itoh A (2021) Extracorporeal life support for cardiogenic shock with either a percutaneous ventricular assist device or an intra-aortic balloon pump. Asaio j 67:25–31

    Article  PubMed  Google Scholar 

  85. Gandhi KD, Moras EC, Niroula S, Lopez PD, Aggarwal D, Bhatia K, Balboul Y, Daibes J, Correa A, Dominguez AC, Birati EY, Baran DA, Serrao G, Mahmood K, Vallabhajosyula S, Fox A (2023) Left ventricular unloading with impella versus IABP in patients with VA-ECMO: a systematic review and meta-analysis. Am J Cardiol 208:53–59

    Article  PubMed  Google Scholar 

  86. Combes A, Price S, Slutsky AS, Brodie D (2020) Temporary circulatory support for cardiogenic shock. Lancet 396:199–212

    Article  PubMed  Google Scholar 

  87. Jia D, Yang IX, Ling RR, Syn N, Poon WH, Murughan K, Tan CS, Choong A, MacLaren G, Ramanathan K (2020) Vascular complications of extracorporeal membrane oxygenation: a systematic review and meta-regression analysis. Crit Care Med 48:e1269–e1277

    Article  CAS  PubMed  Google Scholar 

  88. Mitra S, Ling RR, Tan CS, Shekar K, MacLaren G, Ramanathan K (2021) Concurrent use of renal replacement therapy during extracorporeal membrane oxygenation support: a systematic review and meta-analysis. J Clin Med 10(2):241

    Article  PubMed  PubMed Central  Google Scholar 

  89. Ali JM, Abu-Omar Y (2020) Complications associated with mechanical circulatory support. Ann Transl Med 8:835

    Article  PubMed  PubMed Central  Google Scholar 

  90. Kim H, Cho YH (2020) Role of extracorporeal cardiopulmonary resuscitation in adults. Acute Crit Care 35:1–9

    Article  PubMed  PubMed Central  Google Scholar 

  91. Seetharaman A, Keramati H, Ramanathan K, Cove ME, Kim S, Chua KJ, Leo HL (2021) Vortex dynamics of veno-arterial extracorporeal circulation: a computational fluid dynamics study. Phys Fluids 33:061908

    Article  ADS  CAS  Google Scholar 

  92. Fujii Y, Akamatsu N, Yamasaki Y, Miki K, Banno M, Minami K, Inamori S (2020) Development of a pulsatile flow-generating circulatory assist device (K-Beat) for use with veno-arterial extracorporeal membrane oxygenation in a pig model study. Biology (Basel) 9(6):121

    CAS  PubMed  Google Scholar 

  93. Li G, Zeng J, Liu Z, Zhang Y, Fan X (2021) The pulsatile modification improves hemodynamics and attenuates inflammatory responses in extracorporeal membrane oxygenation. J Inflamm Res 14:1357–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Voigt I, Spangenberg T, Ibrahim T, Bradaric C, Viertel A, Tallone EM, Skurk C, Abel P, Graf J, Rinne T, Böhm J, Ghanem A, Liebetrau C (2022) Efficacy and safety of ECG-synchronized pulsatile extracorporeal membrane oxygenation in the clinical setting: the SynCor trial. Artif Organs 46:387–397

    Article  PubMed  Google Scholar 

  95. Bastos MB, van Wiechen MP, Van Mieghem NM (2020) PulseCath iVAC2L: next-generation pulsatile mechanical circulatory support. Future Cardiol 16:103–112

    Article  CAS  PubMed  Google Scholar 

  96. Snyder T, Bourquin A, Cornat F, Biasetti J, Botterbusch C (2019) Corwave LVAD development update. J Heart Lung Transplant 38:S341–S342

    Article  Google Scholar 

  97. Austin PC (2014) The use of propensity score methods with survival or time-to-event outcomes: reporting measures of effect similar to those used in randomized experiments. Stat Med 33:1242–1258

    Article  MathSciNet  PubMed  Google Scholar 

  98. Benson K, Hartz AJ (2000) A comparison of observational studies and randomized, controlled trials. N Engl J Med 342:1878–1886

    Article  CAS  PubMed  Google Scholar 

  99. Ioannidis JP, Haidich AB, Pappa M, Pantazis N, Kokori SI, Tektonidou MG, Contopoulos-Ioannidis DG, Lau J (2001) Comparison of evidence of treatment effects in randomized and nonrandomized studies. JAMA 286:821–830

    Article  CAS  PubMed  Google Scholar 

  100. Schrage B, Sundermeyer J, Blankenberg S, Colson P, Eckner D, Eden M, Eitel I, Frank D, Frey N, Graf T, Kirchhof P, Kupka D, Landmesser U, Linke A, Majunke N, Mangner N, Maniuc O, Mierke J, Möbius-Winkler S, Morrow DA, Mourad M, Nordbeck P, Orban M, Pappalardo F, Patel SM, Pauschinger M, Pazzanese V, Radakovic D, Schulze PC, Scherer C, Schwinger RHG, Skurk C, Thiele H, Varshney A, Wechsler L, Westermann D (2023) Timing of active left ventricular unloading in patients on venoarterial extracorporeal membrane oxygenation therapy. JACC Heart Fail 11:321–330

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Suei Nee Wong for her assistance with the search strategy, and Chan Yiong Huak for his expertise on the statistical analysis of this project. We dedicate this manuscript to Chuen Seng Tan, who sadly passed away on 25th May 2023.

Funding

There was no funding source for this study.

Author information

Authors and Affiliations

Authors

Contributions

Study design: RRL, CJWL, KR. Search strategy and screening of articles: CJWL, RRL, MPXLL, NSHL, MT, KR. Risk of bias assessment: CJWL, RRL, MPXLL, NSHL, MT, KR. Data collection: CJWL, RRL, MPXLL, NSHL, MT, KR. Data analysis and interpretation: CJWL, RRL, CST, BR, KR. Tables and figures: CJWL, RRL, MPXLL, NSHL, MT. Drafting of manuscript: CJWL, RRL. Critical revision of manuscript for important intellectual content: CJWL, RRL, MPXLL, NSHL, MT, SLL, BR, AC, KS, GM, KR. All authors provided critical conceptual input, interpreted the data analysis, read, and approved the final draft. CJWL, RRL, MPXLL, NSHL, MT, KR have accessed and verified the data. CJWL, RRL, and KR were responsible for the decision to submit the manuscript.

Corresponding author

Correspondence to Kollengode Ramanathan.

Ethics declarations

Conflicts of interest

RRL receives research support from the Clinician Scientist Development Unit, Yong Loo Lin School of Medicine, National University of Singapore. SLL receives support from the National Medical Research Council Transitional Award (MOH-001146) and National University Health System Clinician Scientist Program; she has received research grants from Zoll Foundation, National University Health System, National Kidney Foundation of Singapore and Singapore Heart Foundation. AC receives personal fees from Getinge, Xenios, and Baxter International Inc. He serves on the Executive Committee and Scientific Committee of ECMONet, and is Past-President of the European Extracorporeal Life Support Organization (EuroELSO). DB receives research support from and consults for LivaNova. He has been on the medical advisory boards for Abiomed, Xenios, Medtronic, Inspira and Cellenkos. He is the President-elect of ELSO and the Chair of the Executive Committee of the International ECMO Network (ECMONet), and he writes for UpToDate. KS serves on the Scientific Committee and Network Committee of ECMONet. He reports receiving lecture honoraria outside of the submitted work from Getinge and Abiomed. GM is the President of ELSO. KR is part of the steering committee of ELSO, and serves as the chair of its Publication Committee. He is the past co-chair of the Scientific Oversight Committee. . He has received honoraria from Xenios for educational lectures on ECMO. All other authors declare no competing interests.

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15195 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Low, C.J.W., Ling, R.R., Lau, M.P.X.L. et al. Mechanical circulatory support for cardiogenic shock: a network meta-analysis of randomized controlled trials and propensity score-matched studies. Intensive Care Med 50, 209–221 (2024). https://doi.org/10.1007/s00134-023-07278-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-023-07278-3

Keywords

Navigation