Skip to main content
Log in

Künstliche Intelligenz in der pränatalen kardialen Diagnostik

Artificial intelligence in prenatal cardiac diagnostics

  • Leitthema
  • Published:
Der Gynäkologe Aims and scope

Zusammenfassung

Die pränatale Detektionsrate von fetalen Herzfehlern ist trotz Auflage nationaler und internationaler Screeningprogramme niedrig geblieben. Die Entdeckungsraten im Niedrigrisikokollektiv reichen von 22,5–52,8 %. Erfolgversprechende Ansätze hin zu verbesserten Detektionsraten könnten automatisierte Anwendungen der künstlichen Intelligenz (KI) darstellen. Bezug nehmend auf neuartige und bereits etablierte KI-Lösungen aus der Erwachsenenkardiologie sollen in dieser Übersicht die Möglichkeiten und Limitierungen von KI-Algorithmen für die fetale Echokardiographie diskutiert werden.

Abstract

The prenatal detection rates of fetal heart defects have remained low despite the implementation of national and international screening programs. The detection rates in the low-risk population range from 22.5% to 52.8%. Promising approaches for improved detection rates could include automated applications of artificial intelligence (AI). With reference to novel and already established AI solutions from adult cardiology, this review discusses the possibilities and limitations of AI algorithms for fetal echocardiography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5

Literatur

  1. Kuhn S, Heusel-Weiss M, Kadioglu D, Michl S (2019) Digitale Transformation der Medizin – Die Zukunft aktiv gestalten. Dtsch Arztebl 116(17):A830–834

    Google Scholar 

  2. Thomford NE, Bope CD, Agamah FE et al (2020) Implementing artificial intelligence and digital health in resource-limited settings? Top 10 lessons we learned in congenital heart defects and cardiology. OMICS 24(5):264–277

    CAS  PubMed  Google Scholar 

  3. Obermeyer Z, Emanuel EJ (2016) Predicting the future – big data, machine learning, and clinical medicine. N Engl J Med 375(13):1216–1219

    PubMed  PubMed Central  Google Scholar 

  4. McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577(7788):89–94

    CAS  PubMed  Google Scholar 

  5. Ou WC, Polat D, Dogan BE (2021) Deep learning in breast radiology: current progress and future directions. Eur Radiol 31(7):4872–4885

    PubMed  Google Scholar 

  6. Day TG, Kainz B, Hajnal J, Razavi R, Simpson JM (2021) Artificial intelligence, fetal echocardiography, and congenital heart disease. Prenat Diagn 41:733–742

    PubMed Central  Google Scholar 

  7. Zhou J, Du M, Chang S, Chen Z (2021) Artificial intelligence in echocardiography: detection, functional evaluation, and disease diagnosis. Cardiovasc Ultrasound 19(1):29

    PubMed  PubMed Central  Google Scholar 

  8. Knackstedt C, Bekkers SC, Schummers G et al (2015) Fully automated versus standard tracking of left ventricular ejection fraction and longitudinal strain: the FAST-EFs multicenter study. J Am Coll Cardiol 66(13):1456–1466

    PubMed  Google Scholar 

  9. Tsang W, Salgo IS, Medvedofsky D et al (2016) Transthoracic 3D echocardiographic left heart chamber quantification using an automated adaptive analytics algorithm. JACC Cardiovasc Imaging 9(7):769–782

    PubMed  Google Scholar 

  10. Yeo L, Romero R (2020) New and advanced features of fetal intelligent navigation echocardiography (FINE) or 5D heart. J Matern Fetal Neonatal Med. https://doi.org/10.1080/14767058.2020.1759538

    Article  PubMed  Google Scholar 

  11. Garcia-Canadilla P, Sanchez-Martinez S, Crispi F, Bijnens B (2020) Machine learning in fetal cardiology: what to expect. Fetal Diagn Ther 47(5):363–372

    PubMed  Google Scholar 

  12. Johnson KW, Torres Soto J, Glicksberg BS et al (2018) Artificial intelligence in cardiology. J Am Coll Cardiol 71(23):2668–2679

    PubMed  Google Scholar 

  13. Hinton GE (2007) To recognize shapes, first learn to generate images. Prog Brain Res 165:535–547

    PubMed  Google Scholar 

  14. Kusunose K (2021) Steps to use artificial intelligence in echocardiography. J Echocardiogr 19(1):21–27

    PubMed  Google Scholar 

  15. Yoon YE, Kim S, Chang HJ (2021) Artificial intelligence and echocardiography. J Cardiovasc Imaging 29(3):193–204

    PubMed  PubMed Central  Google Scholar 

  16. Yu L, Guo Y, Wang Y, Yu J, Chen P (2017) Segmentation of fetal left ventricle in echocardiographic sequences based on dynamic convolutional neural networks. IEEE Trans Biomed Eng 64(8):1886–1895

    PubMed  Google Scholar 

  17. Xu L, Liu M, Shen Z et al (2020) DW-Net: a cascaded convolutional neural network for apical four-chamber view segmentation in fetal echocardiography. Comput Med Imaging Graph 80:101690

    PubMed  Google Scholar 

  18. Zhang J, Gajjala S, Agrawal P et al (2018) Fully automated echocardiogram interpretation in clinical practice. Circulation 138(16):1623–1635

    PubMed  PubMed Central  Google Scholar 

  19. Arnaout R, Curran L, Zhao Y, Levine JC, Chinn E, Moon-Grady AJ (2020) Expert-level prenatal detection of complex congenital heart disease from screening ultrasound using deep learning (medRxiv)

    Google Scholar 

  20. Le TK, Truong V, Nguyen-Vo TH (2020) Application of machine learning in screening of congenital heart diseases using fetal echo-cardiography. J Am Coll Cardiol 75(11):648

    Google Scholar 

  21. Dozen A, Komatsu M, Sakai A et al (2020) Image segmentation of the ventricular septum in fetal cardiac ultrasound videos based on deep learning using time-series information. Biomolecules 10(11):1526. https://doi.org/10.3390/biom10111526

    Article  CAS  PubMed Central  Google Scholar 

  22. Dong J, Liu S, Liao Y et al (2020) A generic quality control framework for fetal ultrasound cardiac four-chamber planes. IEEE J Biomed Health Inform 24(4):931–942

    PubMed  Google Scholar 

  23. Nagendran M, Chen Y, Lovejoy CA et al (2020) Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies. BMJ 368:m689

    PubMed  PubMed Central  Google Scholar 

  24. Lee CS, Lee AY (2020) How artificial intelligence can transform randomized controlled trials. Transl Vis Sci Technol 9(2):9

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim YH (2021) Artificial intelligence in medical ultrasonography: driving on an unpaved road. Ultrasonography 40(3):313–317

    PubMed  PubMed Central  Google Scholar 

  26. Patra A, Noble JA (2020) Hierarchical class incremental learning of anatomical structures in fetal echocardiography videos. IEEE J Biomed Health Inform 24(4):1046–1058

    PubMed  Google Scholar 

  27. Huang W, Bridge CP, Noble JA, Zisserman A (2017) Temporal heartnet: towards human-level automatic analysis of fetal cardiac screening video

    Google Scholar 

  28. Sharma H, Drukker L, Chatelain P, Droste R, Papageorghiou AT, Noble JA (2021) Knowledge representation and learning of operator clinical workflow from full-length routine fetal ultrasound scan videos. Med Image Anal 69:101973

    PubMed  Google Scholar 

  29. Droste R, Drukker L, Papageorghiou AT, Noble JA (2020) Automatic probe movement guidance for freehand obstetric ultrasound. Med Image Comput Comput Assist Interv 12263:583–592

    PubMed  PubMed Central  Google Scholar 

  30. Alsharid M, Sharma H, Drukker L, Chatelain P, Papageorghiou AT, Noble JA (2019) Captioning ultrasound images automatically (Paper presented at: Medical Image Computing and Computer Assisted Intervention – MICCAI 2019)

    Google Scholar 

  31. Cai Y, Droste R, Sharma H et al (2020) Spatio-temporal visual attention modelling of standard biometry plane-finding navigation. Med Image Anal 65:101762

    PubMed  Google Scholar 

  32. Baumgartner CF, Kamnitsas K, Matthew J et al (2017) SonoNet: real-time detection and localisation of fetal standard scan planes in freehand ultrasound. IEEE Trans Med Imaging 36(11):2204–2215

    PubMed  Google Scholar 

  33. Yaqub M, Kelly B, Noble JA, Papageorghiou AT (2018) An AI system to support sonologists during fetal ultrasound anomaly screening. Ultrasound Obstet Gynecol 52(S1):9–10

    Google Scholar 

  34. Yaqub M, Sleep N, Syme S et al (2021) ScanNav® audit: an AI-powered screening assistant for fetal anatomical ultrasound. Am J Obstet Gynecol 224(Suppl):312

    Google Scholar 

  35. Yeo L, Romero R (2013) Fetal intelligent navigation echocardiography (FINE): a novel method for rapid, simple, and automatic examination of the fetal heart. Ultrasound Obstet Gynecol 42(3):268–284

    PubMed  Google Scholar 

  36. Yeo L, Luewan S, Romero R (2018) Fetal intelligent navigation echocardiography (FINE) detects 98 % of congenital heart disease. J Ultrasound Med 37(11):2577–2593

    PubMed  PubMed Central  Google Scholar 

  37. Garcia M, Yeo L, Romero R et al (2016) Prospective evaluation of the fetal heart using fetal intelligent navigation echocardiography (FINE). Ultrasound Obstet Gynecol 47(4):450–459

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Huang C, Zhao BW, Chen R et al (2020) Is fetal intelligent navigation echocardiography helpful in screening for d‑transposition of the great arteries? J Ultrasound Med 39(4):775–784

    PubMed  Google Scholar 

  39. DeVore GR, Haxel C, Satou G et al (2021) Improved detection of coarctation of the aorta using speckle-tracking analysis of fetal heart on last examination prior to delivery. Ultrasound Obstet Gynecol 57(2):282–291

    CAS  PubMed  Google Scholar 

  40. DeVore GR, Klas B, Satou G, Sklansky M (2018) 24-segment sphericity index: a new technique to evaluate fetal cardiac diastolic shape. Ultrasound Obstet Gynecol 51(5):650–658

    CAS  PubMed  Google Scholar 

  41. DeVore GR, Klas B, Satou G, Sklansky M (2018) Twenty-four segment transverse ventricular fractional shortening: a new technique to evaluate fetal cardiac function. J Ultrasound Med 37(5):1129–1141

    PubMed  Google Scholar 

  42. DeVore GR, Polanco B, Satou G, Sklansky M (2016) Two-Dimensional Speckle Tracking of the Fetal Heart: A Practical Step-by-Step Approach for the Fetal Sonologist. J Ultrasound Med. 2016 Aug;35(8):1765–1781

    PubMed  Google Scholar 

  43. Lee M, Won H (2019) Novel technique for measurement of fetal right myocardial performance index using synchronised images of right ventricular inflow and outflow. Ultrasound Obstet Gynecol 54:178–179

    Google Scholar 

  44. Kang OJ, Kim SY, Lee MY et al (2021) Novel technique for the measurement of fetal right modified myocardial performance index using synchronized images of right ventricular inflow and outflow and clinical application to twin-to-twin transfusion syndrome. J Ultrasound Med 40(11):2467–2475. https://doi.org/10.1002/jum.15634

    Article  PubMed  Google Scholar 

  45. Box G (1976) Science and statistics. J Am Stat Assoc 71:791–799

    Google Scholar 

  46. Wasserstein R (2010) George Box: a model statistician. Significance 7:134–135

    Google Scholar 

  47. Chen Z, Liu Z, Du M, Wang Z (2021) Artificial intelligence in obstetric ultrasound: an update and future applications. Front Med (Lausanne) 8:733468

    Google Scholar 

  48. Bates DW, Auerbach A, Schulam P, Wright A, Saria S (2020) Reporting and implementing interventions involving machine learning and artificial intelligence. Ann Intern Med 172(11):S137–s144

    PubMed  Google Scholar 

  49. Kelly CJ, Karthikesalingam A, Suleyman M, Corrado G, King D (2019) Key challenges for delivering clinical impact with artificial intelligence. BMC Med 17(1):195

    PubMed  PubMed Central  Google Scholar 

  50. Sengupta PP, Shrestha S, Berthon B et al (2020) Proposed requirements for cardiovascular imaging-related machine learning evaluation (PRIME): a checklist: reviewed by the American college of cardiology Healthcare innovation council. JACC Cardiovasc Imaging 13(9):2017–2035

    PubMed  PubMed Central  Google Scholar 

  51. Antoniades C, Oikonomou EK (2021) Artificial intelligence in cardiovascular imaging-principles, expectations, and limitations. Eur Heart J. https://doi.org/10.1093/eurheartj/ehab678

    Article  PubMed  PubMed Central  Google Scholar 

  52. Quer G, Arnaout R, Henne M, Arnaout R (2021) Machine learning and the future of cardiovascular care: JACC state-of-the-art review. J Am Coll Cardiol 77(3):300–313

    PubMed  PubMed Central  Google Scholar 

  53. Allen B Jr., Seltzer SE, Langlotz CP et al (2019) A road map for translational research on artificial intelligence in medical imaging: from the 2018 national institutes of health/RSNA/ACR/the academy workshop. J Am Coll Radiol 16(9 Pt A):1179–1189

    PubMed  Google Scholar 

  54. Langlotz CP, Allen B, Erickson BJ et al (2019) A roadmap for foundational research on artificial intelligence in medical imaging: from the 2018 NIH/RSNA/ACR/the academy workshop. Radiology 291(3):781–791

    PubMed  Google Scholar 

  55. Gaffar S, Gearhart AS, Chang AC (2020) The next frontier in pediatric cardiology: artificial intelligence. Pediatr Clin North Am 67(5):995–1009

    PubMed  Google Scholar 

  56. Krittanawong C, Rogers AJ, Johnson KW et al (2021) Integration of novel monitoring devices with machine learning technology for scalable cardiovascular management. Nat Rev Cardiol 18(2):75–91

    PubMed  Google Scholar 

  57. Benjamins JW, Hendriks T, Knuuti J, Juarez-Orozco LE, van der Harst P (2019) A primer in artificial intelligence in cardiovascular medicine. Neth Heart J 27(9):392–402

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Schuuring MJ, Išgum I, Cosyns B, Chamuleau SAJ, Bouma BJ (2021) Routine echocardiography and artificial intelligence solutions. Front Cardiovasc Med 8:648877

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Sonntag D (2021) Künstliche Intelligenz in der Medizin und Gynäkologie – Holzweg oder Heilversprechen? Gynäkologe 54:476–482

    PubMed  PubMed Central  Google Scholar 

  60. Banerjee M, Chiew D, Patel KT et al (2021) The impact of artificial intelligence on clinical education: perceptions of postgraduate trainee doctors in London (UK) and recommendations for trainers. BMC Med Educ 21(1):429

    PubMed  PubMed Central  Google Scholar 

  61. Kleesiek J, Murray J, Kaissis G, Braren R (2020) Künstliche Intelligenz und maschinelles Lernen in der onkologischen Bildgebung. Onkologe 26:60–65

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Weichert.

Ethics declarations

Interessenkonflikt

J. Weichert und M. Gembicki haben Vortragshonorare von Samsung HME erhalten. A. Welp, J.L. Scharf, C. Dracopoulos und A. Rody geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

Redaktion

Jan Weichert, Lübeck

Ulrich Gembruch, Bonn

Klaus Diedrich, Lübeck

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weichert, J., Welp, A., Scharf, J.L. et al. Künstliche Intelligenz in der pränatalen kardialen Diagnostik. Gynäkologe 55, 22–31 (2022). https://doi.org/10.1007/s00129-021-04890-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00129-021-04890-6

Schlüsselwörter

Keywords

Navigation