Skip to main content
Log in

Bioavailability and Toxicity of nano Copper Oxide to Pakchoi (Brassica Campestris L.) as Compared with bulk Copper Oxide and Ionic Copper

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The increasing use of copper oxide nano particles (nCuO) as nano-fertilizers and pesticides have raised concerns over their impact on soil environment and agricultural products. In this study, two nCuO with different shapes, namely spherical nCuO (CuO NPs) and tubular nCuO (CuO NTs), were selected to investigate their bioavailability and toxicity to pakchoi in two soils with different properties. At the meantime, CuO bulk particles (CuO BPs) and Cu(NO3)2 were used for comparison. Results showed that all the Cu treatments increased the DTPA extractable (DTPA-Cu) concentrations in GD soil (acidic) more than in HN soil (alkaline). The DTPA-Cu concentrations increased in the order of Cu(NO3)2 ≈ CuO NPs > CuO BPs ≈ CuO NTs in GD soil and Cu(NO3)2 > CuO NPs > CuO BPs ≈ CuO NTs in HN soil. While for the contents of Cu in the aerial parts of pakchoi, the order is CuO NPs > Cu(NO3)2 > CuO NTs ≈ CuO BPs in GD soil and CuO NPs ≈ Cu(NO3)2 > CuO BPs ≈ CuO NTs in HN soil. Only CuO NPs reduced pakchoi biomass in GD soil. There are no significant difference among CuO NPs, CuO BPs, and Cu(NO3)2 in reducing the chlorophyll contents in pakchoi in HN soil, whereas in GD soil, CuO NPs and CuO BPs led to significantly lower chlorophyll contents in pakchoi compared to Cu(NO3)2. Additionally, CuO NPs and Cu(NO3)2 increased Mn and Mo in pakchoi leaf in HN soil, while increased Zn in pakchoi leaf in GD soil. These results indicated that CuO NPs showed higher or comparable toxicity and bioavailability to pakchoi compared with Cu(NO3)2 depending on soil properties, and nCuO are more easily to be transferred from roots to the aerial parts than CuO BPs and Cu(NO3)2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmad A, Hashmi SS, Palma JM, Corpas FJ (2022) Influence of metallic, metallic oxide, and organic nanoparticles on plant physiology. Chemosphere 290:133329

    Article  CAS  Google Scholar 

  • Ahmed B, Rizvi A, Syed A, Jailani A, Elgorban AM, Khan MS, Al-Shwaiman HA, Lee J (2021) Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil. Environ Pollut 289:117854

    Article  CAS  Google Scholar 

  • Anderson A, McLean J, McManus P, Britt D (2017) Soil chemistry influences the phytotoxicity of metal oxide nanoparticles. Int J Nanotechnol 14:15–21

    Article  CAS  Google Scholar 

  • Bonilla-Bird NJ, Ye Y, Akter T, Valdes-Bracamontes C, Darrouzet-Nardi AJ, Saupe GB, Flores-Marges JP, Ma L, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2020) Effect of copper oxide nanoparticles on two varieties of sweetpotato plants. Plant Physiol Bioch 154:277–286

    Article  CAS  Google Scholar 

  • Chung IM, Rekha K, Venkidasamy B, Thiruvengadam M (2019) Effect of copper oxide nanoparticles on the physiology, bioactive molecules, and transcriptional changes in Brassica rapa ssp. rapa seedlings. Water Air Soil Pollut 230: 48

  • Da Costa MVJ, Kevat N, Sharma PK (2020) Copper oxide nanoparticle and copper (II) ion exposure in Oryza sativa reveals two different mechanisms of toxicity. Water Air Soil Pollut 231:258

    Article  Google Scholar 

  • Deng C, Wang Y, Cota-Ruiz K, Reyes A, Sun Y, Peralta-Videa J, Hernandez-Viezcas JA, Turley RS, Niu G, Li C, Gardea-Torresdey J (2020) Bok Choy (Brassica rapa) grown in copper oxide nanoparticles-amended soils exhibits toxicity in a phenotype-dependent manner: translocation, biodistribution and nutritional disturbance. J Hazard Mater 398:122978

    Article  CAS  Google Scholar 

  • Deng C, Wang Y, Cantu JM, Valdes C, Navarro G, Cota-Ruiz K, Hernandez-Viezcas JA, Li C, Elmer WH, Dimkpa CO, White JC, Gardea-Torresdey JL (2022a) Soil and foliar exposure of soybean (Glycine max) to Cu: nanoparticle coating-dependent plant responses. NanoImpact 26:100406

    Article  CAS  Google Scholar 

  • Deng C, Wang Y, Navarro G, Sun Y, Cota-Ruiz K, Hernandez-Viezcas JA, Niu G, Li C, White JC, Gardea-Torresdey J (2022b) Copper oxide (CuO) nanoparticles affect yield, nutritional quality, and auxin associated gene expression in weedy and cultivated rice (Oryza sativa L.) grains. Sci Total Environ 810:152260

    Article  CAS  Google Scholar 

  • Dimkpa CO (2018) Soil properties influence the response of terrestrial plants to metallic nanoparticles exposure. Curr Opin Environ Sci Health 6:1–8

    Article  Google Scholar 

  • Ding J, Liu J, Chang XB, Zhu D, Lassen SB (2020) Exposure of CuO nanoparticles and their metal counterpart leads to change in the gut microbiota and resistome of collembolans. Chemosphere 258:127347

    Article  CAS  Google Scholar 

  • Du W, Tan W, Peralta-Videa JR, Gardea-Torresdey JL, Ji R, Yin Y, Guo H (2017) Interaction of metal oxide nanoparticles with higher terrestrial plants: physiological and biochemical aspects. Plant Physiol Bioch 110:210–225

    Article  CAS  Google Scholar 

  • Du W, Tan W, Yin Y, Ji R, Peralta-Videa JR, Guo H, Gardea-Torresdey JL (2018) Differential effects of copper nanoparticles/microparticles in agronomic and physiological parameters of oregano (Origanum vulgare). Sci Total Environ 618:306–312

    Article  CAS  Google Scholar 

  • Ebbs SD, Bradfield SJ, Kumar P, White JC, Musante C, Ma X (2016) Accumulation of zinc, copper, or cerium in carrot (Daucus carota) exposed to metal oxide nanoparticles and metal ions. Environ Sci Nano 3:114–126

    Article  CAS  Google Scholar 

  • Fischer J, Evlanova A, Philippe A, Filser J (2021) Soil properties can evoke toxicity of copper oxide nanoparticles towards springtails at low concentrations. Environ Pollut 270:116084

    Article  CAS  Google Scholar 

  • Gao X, Spielman-Sun E, Rodrigues SM, Casman EA, Lowry GV (2017) Time and nanoparticle concentration affect the extractability of Cu from CuO NP-amended soil. Environ Sci Technol 51(4):2226–2234

    Article  CAS  Google Scholar 

  • Gao X, Rodrigues SM, Spielman-Sun E, Lopes S, Rodrigues S, Zhang Y, Avellan A, Duarte R, Duarte A, Casman EA, Lowry GV (2019) Effect of soil organic matter, soil pH, and moisturecontent on solubility and dissolution rate of CuO NPs in soil. Environ Sci Technol 53:4959–4967

    Article  CAS  Google Scholar 

  • Guo M, Tong H, Cai D, Zhang W, Yuan P, Shen Y, Peng C (2022) Effect of wetting-drying cycles on the Cu bioavailability in the paddy soil amended with CuO nanoparticles. J Hazard Mater 436:129119

    Article  CAS  Google Scholar 

  • Hedberg J, Blomberg E, Odnevall Wallinder I (2019) In the search for nanospecific effects of dissolution of metallic nanoparticles at freshwater-like conditions: a critical review. Environ Sci Technol 53:4030–4044

    Article  CAS  Google Scholar 

  • Huang Y, Bai X, Li C, Kang M, Weng Y, Gong D (2022) Modulation mechanism of phytotoxicity on Ipomoea aquatica Forssk. By surface coating-modified copper oxide nanoparticles and its health risk assessment. Environ Pollut 314:120288

    Article  CAS  Google Scholar 

  • Ke W, Xiong ZT, Chen S, Chen J (2007) Effects of copper and mineral nutrition on growth, copper accumulation and mineral element uptake in two Rumex japonicus populations from a copper mine and an uncontaminated field sites. Environ Exp Bot 59:59–67

    Article  CAS  Google Scholar 

  • Lasso-Robledo JL, Torres B, Peralta-Videa JR (2022) Do all Cu nanoparticles have similar applications in nano-enabled agriculture? Plant Nano Biol 1:100006

    Article  Google Scholar 

  • Misra SK, Dybowska A, Berhanu D, Croteau MN, Luoma SN, Boccaccini AR, Valsami-Jones E (2012) Isotopically modified nanoparticles for enhanced detection in bioaccumulation studies. Environ Sci Technol 46:1216–1222

    Article  CAS  Google Scholar 

  • Ogunkunle CO, Bornmann B, Wagner R, Fatoba PO, Frahm R, Lützenkirchen-Hecht D (2019) Copper uptake, tissue partitioning and biotransformation evidence by XANES in cowpea (Vigna unguiculata L) grown in soil amended with nano-sized copper particles. Environ Nanotechnol Monit Manag 12:100231

    Google Scholar 

  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394

    Article  CAS  Google Scholar 

  • Rawat S, Pullagurala VLR, Hernandez-Molina M, Sun Y, Niu G, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey JL (2018) Impacts of copper oxide nanoparticles on bell pepper (Capsicum annum L.) plants: a full life cycle study. Environ Sci Nano 5:83–95

    Article  CAS  Google Scholar 

  • Saxena ND, Chauhan NR (2020) An overview on characterization of CuO based nano lubricant. Mater Today Proc 25:888–892

    Article  CAS  Google Scholar 

  • Semenzin E, Subramanian V, Pizzol L, Zabeo A, Fransman W, Oksel C, Hristozov D, Marcomini A (2019) Controlling the risks of nano-enabled products through the life cycle: the case of nano copper oxide paint for wood protection and nano-pigments used in the automotive industry. Environ Int 131:104901

    Article  CAS  Google Scholar 

  • Stewart J, Hansen T, McLean JE, McManus P, Das S, Britt DW, Anderson AJ, Dimkpa CO (2015) Salts affect the interaction of ZnO or CuO nanoparticles with wheat. Environ Toxicol Chem 34:2116–2125

    Article  CAS  Google Scholar 

  • Tamez C, Hernandez-Molina M, Hernandez-Viezcas JA, Gardea-Torresdey JL (2019a) Uptake, transport, and effects of nano-copper exposure in zucchini (Cucurbita pepo). Sci Total Environ 665:100–106

    Article  CAS  Google Scholar 

  • Tamez C, Morelius EW, Hernandez-Viezcas JA, Peralta-Videa JR, Gardea-Torresdey J (2019b) Biochemical and physiological effects of copper compounds/nanoparticles on sugarcane (Saccharum officinarum). Sci Total Environ 649:554–562

    Article  CAS  Google Scholar 

  • Velicogna JR, Schwertfeger DM, Beer C, Jesmer AH, Kuo J, Chen H, Scroggins RP, Princz JI (2020) Phytotoxicity of copper oxide nanoparticles in soil with and without biosolid amendment. NanoImpact 17:100196

    Article  Google Scholar 

  • Velicogna JR, Schwertfeger D, Jesmer A, Beer C, Kuo J, DeRosa MC, Scroggins R, Smith M, Princz J (2021) Soil invertebrate toxicity and bioaccumulation of nano copper oxide and copper sulphate in soils, with and without biosolids amendment. Ecotoxicol Environ Saf 217:112222

    Article  CAS  Google Scholar 

  • Wang Z, Xie X, Zhao J, Liu X, Feng WQ, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L). Environ Sci Technol 468:4434–4441

    Article  Google Scholar 

  • Wang Y, Lin Y, Xu Y, Yin Y, Guo H, Du W (2019) Divergence in response of lettuce (var. Ramosa Hort) to copper oxide nanoparticles/microparticles as potential agricultural fertilizer. Environ Pollut Bioavail 31:80–84

    Article  CAS  Google Scholar 

  • Xu ML, Wang YS, Mu ZT, Li SW, Li HL (2021) Dissolution of copper oxide nanoparticles is controlled by soil solution pH, dissolved organic matter, and particle specific surface area. Sci Total Environ 772:145477

    Article  CAS  Google Scholar 

  • Yang Q, Liu YH, Qiu YH, Wang ZL, Li HL (2022) Dissolution kinetics and solubility of copper oxide nanoparticles as affected by soil properties and aging time. Environ Sci Pollut Res 29(27):40674–40685

    Article  CAS  Google Scholar 

  • Yang Q, Li HP, Zhang YQ, Liu YH, Li HL, Pedosphere (2023) https://doi.org/10.1016/j.pedsph.2023.05.010

  • Yusefi-Tanha E, Fallah S, Rostamnejadi A, Pokhrel LR (2020) Particle size and concentration dependent toxicity of copper oxide nanoparticles (CuONPs) on seed yield and antioxidant defense system in soil grown soybean (Glycine max cv. Kowsar) Sci Total Environ 715:136994

    Article  CAS  Google Scholar 

  • Zong X, Wu D, Zhang J, Tong X, Yin Y, Sun Y, Guo H (2022) Size-dependent biological effect of copper oxide nanoparticles exposure on cucumber (Cucumis sativus). Environ Sci Pollut Res 29:69517–69526

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant number 41771524).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helian Li.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Li, H., Qiu, Y. et al. Bioavailability and Toxicity of nano Copper Oxide to Pakchoi (Brassica Campestris L.) as Compared with bulk Copper Oxide and Ionic Copper. Bull Environ Contam Toxicol 112, 52 (2024). https://doi.org/10.1007/s00128-024-03882-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00128-024-03882-1

Keywords

Navigation