Skip to main content
Log in

Promotion of Zinc Tolerance, Acquisition and Translocation of Phosphorus in Mimosa pudica L. Mediated by Arbuscular Mycorrhizal Fungi

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Heavy metal contamination of soil is of increasing concern because of its potential risk to human health. In this study, two AMFs (Rhizophagus intraradices and Funneliformis mosseae) substantially increased the biomass of bashfulgrass in Zn-contaminated soil, even at Zn levels of up to 600 mg kg−1. Zn uptake in R. intraradices- and F. mosseae-mycorrhizal bashfulgrass was increased by 40-fold and 7-fold, respectively, when plants grown in Zn-contaminated (400 mg kg−1) soil. Elemental analysis showed that neither AMF had an effect on Zn concentration in plant tissues, including the roots and shoots. However, a significant increase of phosphorus (P) concentration was observed, suggesting the increased is from the improved use efficiency of soil nutrients by AMFs. Comparing the two AMFs, better growth performance with more biomass occurred with R. intraradices-inoculated bashfulgrass in Zn-contaminated soil. This is consistent with R. intraradices being more tolerant to Zn than F. mosseae, indicated by a higher colonization percentage in bashfulgrass roots. Taken together, our data indicate that AMFs possibly improve acquisition and translocation of P to promote increased biomass. Moreover, mycorrhiza did not enhance Zn accumulation in shoots and roots of bashfulgrass at the same Zn level. In the future, developing AMF (especially R. intraradices) inoculation of plants might be a desirable means of safe production of ornamental plants in metal-polluted soil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Baye H, Hymeteb A (2010) Lead and cadmium accumulation in medicinal plants collected from environmentally different sites. Bull Environ Contam Toxicol 84:197–201

    Article  CAS  Google Scholar 

  • Bouain N, Shahzad Z, Rouached A, Khan G, Berthomieu P, Abdelly C, Poirier Y, Rouached H (2014) Phosphate and zinc transport and signaling in plants: toward a better understanding of their homeostasis interaction. J Exp Bot 65:5725–5741

    Article  CAS  Google Scholar 

  • Bowles T, Jackson L, Cavagnaro T (2018) Mycorrhizal fungi enhance plant nutrient acquisition and modulate nitrogen loss with variable water regimes. Glob Change Biol 24:e171–e182

    Article  Google Scholar 

  • Broadley MR, White PJ, Hanmmond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702

    Article  CAS  Google Scholar 

  • Clark RB, Zeto SK (2000) Mineral acquisition by arbuscular mycorrhizal plants. J Plant Nutrition 23:867–902

    Article  CAS  Google Scholar 

  • De Oliveira V, Ullah I, Dunwell J, Tibbett M (2020) Mycorrhizal symbiosis induces divergent patterns of transport and partitioning of Cd and Zn in Populus trichocarpa. Environ Exp Bot 171:103925

    Article  Google Scholar 

  • Ferrol N, Tamayo E, Vargas P (2016) The heavy metal paradox in arbuscular mycorrhizas: from mechanisms to biotechnological applications. J Exp Bot 67:6253–6265

    Article  CAS  Google Scholar 

  • Filho JAC, Sobrinho RR, Pascholati SF (2017) Arbuscular mycorrhizal symbiosis and its role in plant nutrition in sustainable agriculture. Agriculturally Important Microbes for Sustainable Agriculture 2:129–164

    Article  Google Scholar 

  • Gonzaga M, Mackowiak C, Quintao de Almeida A, Wisniewski A Jr, Figueiredo de Souza D, da Silva LI, Nascimento de Jesus A (2018) Assessing biochar applications and repeated Brassica juncea L. production cycles to remediate Cu contaminated soil. Chemosphere 201:278–285

    Article  CAS  Google Scholar 

  • González-Guerrero M, Azcón-Aguilar C, Mooney M, Valderas A, MacDiarmid C, Eide D, Ferrol N (2005) Characterization of a Glomus intraradices gene encoding a putative Zn transporter of the cation diffusion facilitator family. Fungal Genet Biol 42:130–140

    Article  Google Scholar 

  • Göhre V, Paszkowski U (2006) Contribution of the arbuscular mycorrhizal symbiosis to heavy metal phytoremediation. Planta 223:1115–1122

    Article  Google Scholar 

  • Haq I (2004) Safety of medicinal plants. Pakistan J Med Res 43:203–210

    Google Scholar 

  • Hu J, Wang H, Wu F, Wu S, Cao Z, Lin X, Wong MH (2014) Arbuscular mycorrhizal fungi influence the accumulation and partitioning of Cd and P in bashfulgrass (Mimosa pudica L.) grown on a moderately Cd-contaminated soil. Appl Soil Ecol 73:51–57

    Article  Google Scholar 

  • Huang C, Barker SJ, Langridge P, Smith FW, Graham RD (2000) Zinc deficiency up-regulates expression of high-affinity phosphate transporter genes in both phosphate-sufficient and -deficient barley roots. Plant Physiol 124:415–422

    Article  CAS  Google Scholar 

  • Janoušková M, Vosátka M, Rossi L, Lugon-Moulin N (2007) Effects of arbuscular mycorrhizal inoculation on cadmium accumulation by different tobacco (Nicotiana tabacum L.) types. Appl Soil Ecol 35:502–510

    Article  Google Scholar 

  • Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H (2014) Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis. J Exp Bot 65:871–884

    Article  CAS  Google Scholar 

  • Lingua G, Franchin C, Todeschini V, Castiglione S, Biondi S, Burlando B, Parravicini V, Torrigiani P, Berta G (2008) Arbuscular mycorrhizal fungi differentially affect the response to high zinc concentrations of two registered poplar clones. Environ Pollut 153:137–147

    Article  CAS  Google Scholar 

  • Liu LZ, Gong ZQ, Zhang YL, Li PJ (2014) Growth, cadmium uptake and accumulation of maize (Zea mays L.) under the effects of arbuscular mycorrhizal fungi. Ecotoxicol 23:1979–1986

  • Lucini L, Bernardo L (2015) Comparison of proteome response to saline and zinc stress in lettuce. Front Plant Sci 6:240

    Article  Google Scholar 

  • Marschner H (2012) Mineral nutrition of higher plants, 3rd edn. Academic Press, London

    Google Scholar 

  • McGonigle TP, Miller MH, Evans DG, Fairchild GL, Swan JA (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  Google Scholar 

  • Meier S, Borie F, Bolan N, Cornejo P (2012) Phytoremediation of metal-polluted soils by arbuscular mycorrhizal fungi. Crit Rev Env Sci Tec 42:741–775

    Article  CAS  Google Scholar 

  • Misson J, Raghothama KG, Jain A, Jouhet J, Block MA, Bligny R, Ortet P, Creff A, Somerville S, Rolland N, Doumas P, Nacry P, Herrerra-Estrella L, Nussaume L, Thibaud MC (2005) A genome-wide transcriptional analysis using Arabidopsis thaliana affymetrix gene chips determined plant responses to phosphate deprivation. Proc Natl Acad Sci USA 102:11934–11939

    Article  CAS  Google Scholar 

  • Mnasri M, Janoušková Rydlová J, Abdelly C, Ghnaya T (2017) Comparison of arbuscular mycorrhizal fungal effects on the heavy metal uptake of a host and a non-host plant species in contact with extraradical mycelial network. Chemosphere 171:476–484

    Article  CAS  Google Scholar 

  • Mozafar A, Ruh R, Klingel P, Gamper H, Egli S, Frossard E (2002) Effect of heavy metal contaminated shooting range soils on mycorrhizal colonization of roots and metal uptake by leek. Environ Monit Assess 79:177–191

    Article  CAS  Google Scholar 

  • Prasad A, Kumar S, Khaliq A, Pandey A (2011) Heavy metals and arbuscular mycorrhizal (AM) fungi can alter the yield and chemical composition of volatile oil of sweet basil (Ocimum basilicum L.). Biol Fert Soils 47:853–861

    Article  CAS  Google Scholar 

  • Palmgren MG, Clemens S, Williams LE, Krämer U, Borg S, Schjørring JK, Dale Sanders D (2008) Zinc biofortification of cereals: problems and solutions. Trends Plant Sci 13:464–473

    Article  CAS  Google Scholar 

  • Rouphael Y, Franken P, Schneider C, Schwarz D, Giovannetti M, Agnolucci M, Pascale SD, Bonini P, Colla G (2015) Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. Sci Hortic 196:91–108

  • Sarret G, Saumitou-Laprade P, Bert V, Proux O, Hazemann JL, Traverse A, Marcus MA, Manceau A (2002) Forms of zinc accumulated in the hyperaccumulator Arabidopsis halleri. Plant Physiol 130:1815–1826

    Article  CAS  Google Scholar 

  • Shi L, Wang J, Liu BH, Nara K, Lian CL, Shen ZG, Xia Y, Chen YH (2017) Ectomycorrhizal fungi reduce the light compensation point and promote carbon fixation of Pnus thunbergii seedlings to adapt to shade environments. Mycorrhiza 27:823–830

    Article  Google Scholar 

  • Shi WG, Zhang YH, Chen SL, Polle A, Renenberg H, Luo ZB (2019) Physiological and molecular mechanisms of heavy metal accumulation in nonmycorrhizal versus mycorrhizal plants. Plant Cell Environ 42:1087–1103

    Article  CAS  Google Scholar 

  • Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, Cambridge, UK

    Google Scholar 

  • Smith SE, Jakobsen I, Grønlund M, Smith FA (2011) Roles of arbuscular mycorrhizas in plant phosphorus nutrition: Interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol 156:1050–1057

    Article  CAS  Google Scholar 

  • Souza SCR, Souza LA, Schiavinato MA, Silva FMD, de Andrade SAL (2020) Zinc toxicity in seedlings of three trees from the Fabaceae associated with arbuscular mycorrhizal fungi. Ecotoxicol Environ Saf 195:110450

    Article  CAS  Google Scholar 

  • Wang WX, Shi JC, Xie QJ, Jiang YN, Yu N, Wang ET (2017) Nutrient exchange and regulation in Arbuscular mycorrhizal symbiosis. Molecular Plant 10:1147–1158

    Article  CAS  Google Scholar 

  • Wang FY, Zhang XQ, Zhang SQ, Zhang SW, Sun YH (2020) Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil. Chemosphere 254:126791

    Article  CAS  Google Scholar 

  • Watts-Williams S, Tyerman SD, Cavagnaro TR (2017) The dual benefit of arbuscular mycorrhizal fungi under soil zinc deficiency and toxicity: linking plant physiology and gene expression. Plant Soil 420:375–388

    Article  CAS  Google Scholar 

  • Zhang Y, Hu JL, Bai JF, Wang JH, Yin R, Wang JW, Lin XG (2018) Arbuscular mycorrhizal fungi alleviate the heavy metal toxicity on sunflower (Helianthus annuus L.) plants cultivated on a heavily contaminated field soil at a WEEE-recycling site. Sci Total Environ 628–629:282–290

    Article  Google Scholar 

  • Zhu YG, Smith SE, Smith FA (2001) Plant growth and cation composition of two cultivars of spring wheat (Triticum aestivum L.) differing in P uptake efficiency. J Exp Bot 52:1277–1282

    CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (2016YFD0800800, 2016YFD0800707), the Science Foundation of Jiangsu Province, China (BE2016743) and the Special Program of Innovation and Entrepreneurship Training for College Student of Nanjing Agricultural University, China (S20190002, 202010307028Z).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, L., Zhang, J., Wei, Q. et al. Promotion of Zinc Tolerance, Acquisition and Translocation of Phosphorus in Mimosa pudica L. Mediated by Arbuscular Mycorrhizal Fungi. Bull Environ Contam Toxicol 106, 507–515 (2021). https://doi.org/10.1007/s00128-021-03113-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-021-03113-x

Keywords

Navigation