Skip to main content
Log in

Exposure to Metalaxyl Disturbs the Skeletal Development of Zebrafish Embryos

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Metalaxyl is broadly applied in agriculture to control peronosporales-caused diseases in plant. To investigate the toxic effects, zebrafish embryos were exposed to metalaxyl at 5, 50 and 500 ng/L for 72 h, the development of larvae were assessed. A significant decreased survival rate, body length, hatching rate (48 h post-fertilization), and a significant increased spinal curvature rate were observed in the 500 ng/L treatment. The lengths of lower jaw, upper jaw and hyomandibular were significantly decreased in the 5, 50 and 500 ng/L groups; while the lower jaw width was significantly increased in the 500 ng/L group. The lengths of palatoquadrate, ceratohyal and ethmoid plate were reduced. Though cyp26a1 mRNA levels showed no significant change, the transcription of bmp2b (in the 500 ng/L group), ihh (in the 50 and 500 ng/L groups), shh (in the 5, 50 and 500 ng/L groups) were significantly up-regulated, which may be related to the abnormal development of the skeleton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Allinson G, Zhang P, Bui AD, Allinson M, Rose G, Marshall S, Pettigrove V (2015) Pesticide and trace metal occurrence and aquatic benchmark exceedances in surface waters and sediments of urban wetlands and retention ponds in Melbourne, Australia. Environ Sci Pollut Res 22:10214–10226

    Article  CAS  Google Scholar 

  • Avaron F, Hoffman L, Guay D, Akimenko MA (2006) Characterization of two new zebrafish members of the hedgehog family: atypical expression of a zebrafish indian hedgehog gene in skeletal elements of both endochondral and dermal origins. Dev Dyn 235:478–489

    Article  CAS  Google Scholar 

  • Battaglin WA, Sandstrom MW, Kuivila KM, Kolpin DW, Meyer MT (2011) Occurrence of azoxystrobin, propiconazole, and selected other fungicides in US streams, 2005–2006. Water Air Soil Pollut 218:307–322

    Article  CAS  Google Scholar 

  • Carvan MJ, Loucks E, Weber DN, Williams FE (2004) Ethanol effects on the developing zebrafish: neurobehavior and skeletal morphogenesis. Neurotoxicol Teratol 26(6):757–768

    Article  CAS  Google Scholar 

  • Du SJ, Frenkel V, Kindschi G, Zohar Y (2001) Visualizing normal and defective bone development in zebrafish embryos using the fluorescent chromophore calcein. Dev Biol 238:239–246

    Article  CAS  Google Scholar 

  • Eberhart JK, Swartz ME, Crump JG, Kimmel CB (2006) Early hedgehog signaling from neural to oral epithelium organizes anterior craniofacial development. Development 133:1069–1077

    Article  CAS  Google Scholar 

  • He CY, Zuo ZH, Shi X, Li RX, Chen DL, Huang X, Chen YX, Wang CG (2011) Effects of benzo(a)pyrene on the skeletal development of Sebastiscus marmoratus embryos and the molecular mechanism involved. Aquat Toxicol 101:335–341

    Article  CAS  Google Scholar 

  • Houbraken M, Habimana V, Senaeve D, López-Dávila E, Spanoghe P (2017) Multi-residue determination and ecological risk assessment of pesticides in the lakes of Rwanda. Sci Total Environ 576:888–894

    Article  CAS  Google Scholar 

  • Hsu LS, Chiou BH, Hsu TW, Wang CC, Chen SC (2016) The regulation of transcriptome responses in zebrafish embryo exposure to triadimefon. Environ Toxicol 32(1):217–226

    Article  Google Scholar 

  • Huang LX, Wang CG, Zhang YY, Jian L, Zhong YF, Zhou YL, Chen YX, Zuo ZH (2012) Benzo[a]pyrene exposure influences the cardiac development and the expression of cardiovascular relative genes in zebrafish (Danio rerio) embryos. Chemosphere 87:369–375

    Article  CAS  Google Scholar 

  • Karsenty G (2000) Bone morphorgenetic proteins and skeletal and nonskeletal development. In: Canalis E (ed) Skeletal growth factors. Lippincott Williams and Wilkins, Philadelphia, pp 291–298

    Google Scholar 

  • Krief S, Berny P, Gumisiriza F, Gross R, Demeneix B, Baptiste Fini J, Chapman CA, Chapman LJ, Seguya A, Wasswa J (2017) Agricultural expansion as risk to endangered wildlife: pesticide exposure in wild chimpanzees and baboons displaying facial dysplasia. Sci Total Environ 598:647–656

    Article  CAS  Google Scholar 

  • López-Romero F, Zúňiga G, Martínez-Jerónimo F (2012) Asymmetric patterns in the cranial skeleton of zebrafish (Danio rerio) exposed to sodium pentachlorophenate at different embryonic developmental stages. Ecotoxicol Environ Saf 84:25–31

    Article  Google Scholar 

  • Maharajan K, Muthulakshmi S, Nataraj B, Ramesh M, Kadirvelu K (2018) Toxicity assessment of pyriproxyfen in vertebrate model zebrafish embryos (Danio rerio): a multi biomarker study. Aquat Toxicol 196:132–145

    Article  CAS  Google Scholar 

  • Mak KK, Kronenberg HM, Chuang PT, Mackem S, Yang Y (2008) Indianhedgehog signals independently of PTHrP to promote chondrocyte hypertrophy. Development 135:1947–1956

    Article  CAS  Google Scholar 

  • Malhat FM (2017) Persistence of metalaxyl residues on tomato fruit using high performance liquid chromatography and QuEChERS methodology. Arab J Chem 10:S765–S768

    Article  CAS  Google Scholar 

  • Meite F, Alvarez-Zaldívar P, Crochet A, Wiegert C, Payraudeau S, Imfeld G (2018) Impact of rainfall patterns and frequency on the export of pesticides and heavy-metals from agricultural soils. Sci Total Environ 616–617:500–509

    Article  Google Scholar 

  • Moeder M, Carranza-Diaz O, López-Angulo G, Vega-Aviña R, Chávez-Durán FA, Jomaa S, Winkler U, Schrader S, Reemtsma T, Delgado-Vargas F (2017) Potential of vegetated ditches tomanage organic pollutants derived from agricultural runoff and domestic sewage: a case study in Sinaloa (Mexico). Sci Total Environ 598:1106–1115

    Article  CAS  Google Scholar 

  • Mu XY, Chai TT, Wang K, Zhu LZ, Huang Y, Shen GM, Li YR, Li XF, Wang CJ (2016) The developmental effect of difenoconazole on zebrafishembryos: a mechanism research. Environ Pollut 212:18–26

    Article  CAS  Google Scholar 

  • Muenke M, Beachy PA (2000) Genetics of ventral forebrain development and holoprosencephaly. Curr Opin Genet Dev 10:262–269

    Article  CAS  Google Scholar 

  • Osterauer R, Köhler HR (2008) Temperature-dependent effects of the pesticides thiacloprid and diazinon on the embryonic development of zebrafish (Danio rerio). Aquat Toxicol 86:485–494

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res 30(9):e36

    Article  Google Scholar 

  • Roessler E, Belloni E, Gaudenz K, Jay P, Berta P, Scherer SW, Tsui LC, Muenke M (1996) Mutations in the human sonic hedgehog gene cause holoprosencephaly. Nat Genet 14:357–360

    Article  CAS  Google Scholar 

  • USEPA (1995) Environmental Effects Database (EEDB), Office of Pesticide Programs, Environmental Fate and Effects Division. USEPA Washington, DC

  • Wada N, Javidan Y, Nelson S, Carney TJ, Kelsh RN, Schilling TF (2005) Hedgehog signaling is required for cranial neural crest morphogenesis and chondrogenesis at the midline in the zebrafish skull. Development 132:3977–3988

    Article  CAS  Google Scholar 

  • Wan MT, Kuo JN, Mcpherson B, Pasternak J (2006) Agricultural pesticide residues in farm ditches of the lower Fraser Valley, British Columbia, Canada. J Environ Sci Health B 41(5):647–669

    Article  Google Scholar 

  • Wu YQ, Zhang Y, Chen M, Yang QH, Zhuang SS, Lv LJ, Zuo ZH, Wang CG (2019) Exposure to low-level metalaxyl impacts the cardiac development and function of zebrafish embryos. J Environ Sci 85:1–8

    Article  Google Scholar 

  • Yao K, Zhu L, Duan ZH, Chen ZZ, Li Y, Zhu XS (2009) Comparison of R-metalaxyl and rac-metalaxyl in acute, chronic, and sublethal effect on aquatic organisms: Daphnia magna, Scenedesmus quadricanda, and Danio rerio. Environ Toxicol 24:148–156

    Article  CAS  Google Scholar 

  • Zhang YJ, Zhang Y, Chen A, Zhang W, Chen H, Zhang Q (2016) Enantioselectivity in developmental toxicity of rac-metalaxyl and R-metalaxyl in zebrafish (Danio rerio) embryo. Chirality 28:489–494

    Article  CAS  Google Scholar 

  • Zheng SL, Chen B, Qiu XY, Chen M, Ma ZY, Yu XG (2016) Distribution and risk assessment of 82 pesticides in Jiulong River and estuary in South China. Chemosphere 144:1177–1192

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Natural Scientific Fund of Fujian Province, China (2019J01825), Fujian Provincial Department of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuqiong Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Xu, Z., Xu, X. et al. Exposure to Metalaxyl Disturbs the Skeletal Development of Zebrafish Embryos. Bull Environ Contam Toxicol 104, 432–437 (2020). https://doi.org/10.1007/s00128-020-02806-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-02806-z

Keywords

Navigation