Skip to main content
Log in

A Review on Adsorption Technologies for Mercury Emission Control

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

This study summarized existing adsorption technologies for the removal of elemental mercury in the flue gas. Both carriers (e.g., active carbon (AC), pyrolyzed char, inorganic adsorbents and fly ash) and various modification methods (pore structure improvement, oxygen-containing functional groups addition and new active reagents impregnation) were compared to shed light on the development of future adsorption technology. AC and char possibly performed more mercury adsorption capacity (MAC) compared with fly ash and inorganic adsorbents since carbon atom existence was easier to form the active halogen groups (C–X) and oxygen containing groups. Though both pore structure improvement and chemical group formation improved the MAC of adsorbents, the chemical modification methods (oxygen-containing functional groups addition and new active reagents impregnation) were more effective. The impregnation of halogen, sulfur and metal chloride could distinctly form lots of active sites on the adsorbents and developed high effective mercury adsorbents. In the future, the adsorption researches possibly focus on SO2 and H2O resistance of adsorbents, separable adsorbents, low-cost chemical modification methods, and utilization potential of fly ash.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Assari M, Rezaee A, Rangkooy H (2015) Bone char surface modification by nano-gold coating for elemental mercury vapor removal. Appl Surf Sci 342:106–111

    Article  CAS  Google Scholar 

  • Cai J, Shen B, Li Z et al (2014a) Removal of elemental mercury by clays impregnated with KI and KBr. Chem Eng J 241:19–27

    Article  CAS  Google Scholar 

  • Cai J, Shen B, Li Z et al (2014b) Removal of elemental mercury by clays impregnated with KI and KBr. Chem Eng J 241(6):19–27

    CAS  Google Scholar 

  • De M, Azargohar R, Dalai A et al (2013) Mercury removal by bio-char based modified activated carbons. Fuel 103(3):570–578

    Article  CAS  Google Scholar 

  • Ding F, Zhao Y, Mi L et al (2012) Removal of gas-phase elemental mercury in flue gas by inorganic chemically promoted natural mineral sorbents. Ind Eng Chem Res 51(7):3039–3047

    Article  CAS  Google Scholar 

  • European Union (EU) (2017) Commission implementing decision (EU) 2017/1442 of 31 July 2017 establishing best available techniques (BAT) conclusions, under Directive 2010/75/EU of the European Parliament and of the council, for large combustion plants, commission implementing decision (EU)

  • Fan X, Li C, Zeng G et al (2012) The effects of Cu/HZSM-5 on combined removal of Hg0 and NO from flue gas. Fuel Process Technol 104(2):325–331

    Article  CAS  Google Scholar 

  • Ghorishi S, Keeney R, Serre S et al (2002) Development of a Cl-impregnated activated carbon for entrained-flow capture of elemental mercury. Environ Sci Technol 36(20):4454–4459

    Article  CAS  Google Scholar 

  • Hou W, Zhou J, Yu C et al (2014) Pd/Al2O3 sorbents for elemental mercury capture at high temperatures in syngas. Ind Eng Chem Res 53(23):9909–9914

    Article  CAS  Google Scholar 

  • Hower J, Senior C, Suuberg E et al (2010) Mercury capture by native fly ash carbons in coal-fired power plants. Prog Energy Combust Sci 36(4):510–529

    Article  CAS  Google Scholar 

  • Hsi H, Chen C (2012) Influences of acidic/oxidizing gases on elemental mercury adsorption equilibrium and kinetics of sulfur-impregnated activated carbon. Fuel 98:229–235

    Article  CAS  Google Scholar 

  • Hsi H, Rood M, Rostam M et al (2001) Effects of sulfur impregnation temperature on the properties and mercury adsorption capacities of activated carbon fibers (ACFs). Environ Sci Technol 35(13):2785–2791

    Article  CAS  Google Scholar 

  • Hsi H, Tsai C, Kuo T et al (2011) Development of low-concentration mercury adsorbents from biohydrogen-generation agricultural residues using sulfur impregnation. Bioresour Technol 102(16):7470–7477

    Article  CAS  Google Scholar 

  • Jew A, Rupp E, Geatches D et al (2015) Mercury interaction with the fine fraction of coal-combustion fly ash in a simulated coal power plant flue gas stream. Energy Fuels 29(9):6025–6038

    Article  CAS  Google Scholar 

  • Lee S (2004) Removal of gas-phase elemental mercury by iodine- and chlorine-impregnated activated carbons. Atmos Environ 38(29):4887–4893

    Article  CAS  Google Scholar 

  • Li Y, Lee C, Gullett B (2003) Importance of activated carbon’s oxygen surface functional groups on elemental mercury adsorption. Fuel Energy 44(5):298

    Google Scholar 

  • Li G, Shen B, Wang Y et al (2015a) Comparative study of element mercury removal by three bio-chars from various solid wastes. Fuel 145(5):189–195

    Article  CAS  Google Scholar 

  • Li G, Shen B, Li Y et al (2015b) Removal of element mercury by medicine residue derived biochars in presence of various gas compositions. J Hazard Mater 298:162–169

    Article  CAS  Google Scholar 

  • Li G, Wang S, Wu Q et al (2016a) Mercury sorption study of halides modified bio-chars derived from cotton straw. Chem Eng J 302(3):305–313

    CAS  Google Scholar 

  • Li G, Wang S, Wu Q et al (2016b) Mercury sorption study of halides modified bio-chars derived from cotton straw. Chem Eng J 302:305–313

    Article  CAS  Google Scholar 

  • Li G, Wang S, Wang F et al (2017) Role of inherent active constituents on mercury adsorption capacity of chars from four solid wastes. Chem Eng J 307:544–552

    Article  CAS  Google Scholar 

  • Liu Z, Li X, Lee J et al (2015) Oxidation of elemental mercury vapor over γ-Al2O3 supported CuCl2 catalyst for mercury emissions control. Chem Eng J 275(1):1–7

    CAS  Google Scholar 

  • Liu K, Wang S, Wu Q et al (2018) A highly resolved mercury emission inventory of chinese coal-fired power plants. Environ Sci Technol 52(4):2400–2408

    Article  CAS  Google Scholar 

  • Ministry of the Environment of Japan (MOE) (2018) Air pollution control law. MOE, Tokyo

    Google Scholar 

  • Niu Q, Luo J, Xia Y et al (2017) Surface modification of bio-char by dielectric barrier discharge plasma for Hg0 removal. Fuel Process Technol 156:310–316

    Article  CAS  Google Scholar 

  • Olson D, Tsuji K, Shiraishi I (2000) The reduction of gas phase air toxics from combustion and incineration sources using the MET–Mitsui–BF activated coke process. Fuel Process Technol 65–66(2):393–405

    Article  Google Scholar 

  • Presto A, Granite E (2006) Survey of catalysts for oxidation of mercury in flue gas. Environ Sci Technol 40(18):5601–5609

    Article  CAS  Google Scholar 

  • Sano A, Takaoka M, Shiota K (2017) Vapor-phase elemental mercury adsorption by activated carbon co-impregnated with sulfur and chlorine. Chem Eng J 315:598–607

    Article  CAS  Google Scholar 

  • Sasmaz E, Kirchofer A, Jew A et al (2012) Mercury chemistry on brominated activated carbon. Fuel 99:188–196

    Article  CAS  Google Scholar 

  • Serre S, Silcox G (2000) Adsorption of elemental mercury on the residual carbon in coal fly ash. Ind Eng Chem Res 39(6):1723–1730

    Article  CAS  Google Scholar 

  • Shao H, Liu X, Zhou Z et al (2016) Elemental mercury removal using a novel KI modified bentonite supported by starch sorbent. Chem Eng J 291:306–316

    Article  CAS  Google Scholar 

  • Shen Z, Ma J, Mei Z et al (2010) Metal chlorides loaded on activated carbon to capture elemental mercury. J Environ Sci 22(11):1814–1819

    Article  CAS  Google Scholar 

  • Shen B, Li G, Wang F et al (2015) Elemental mercury removal by the modified bio-char from medicinal residues. Chem Eng J 272:28–37

    Article  CAS  Google Scholar 

  • Shu T, Lu P, He N (2013a) Mercury adsorption of modified mulberry twig chars in a simulated flue gas. Bioresour Technol 136(2):182–187

    Article  CAS  Google Scholar 

  • Shu T, Lu P, He N (2013b) Mercury adsorption of modified mulberry twig chars in a simulated flue gas. Bioresour Technol 136:182–187

    Article  CAS  Google Scholar 

  • Skodras G, Diamantopoulou I, Zabaniotou A et al (2007) Enhanced mercury adsorption in activated carbons from biomass materials and waste tires. Fuel Process Technol 88(8):749–758

    Article  CAS  Google Scholar 

  • Song Y, Lee T (2016) Preparation of gold- and chlorine-impregnated bead-type activated carbon for a mercury sorbent trap. Chemosphere 165:470–477

    Article  CAS  Google Scholar 

  • Sun P, Zhang B, Zeng X et al (2017) Deep study on effects of activated carbon’s oxygen functional groups for elemental mercury adsorption using temperature programmed desorption method. Fuel 200:100–106

    Article  CAS  Google Scholar 

  • Tan Z, Qiu J, Zeng H et al (2011) Removal of elemental mercury by bamboo charcoal impregnated with H2O2. Fuel 90(4):1471–1475

    Article  CAS  Google Scholar 

  • Tan Z, Sun L, Xiang J et al (2012) Gas-phase elemental mercury removal by novel carbon-based sorbents. Carbon 50(2):362–371

    Article  CAS  Google Scholar 

  • Tan Z, Niu G, Chen X (2015) Removal of elemental mercury by modified bamboo carbon. Chin J Chem Eng 23(11):1875–1880

    Article  CAS  Google Scholar 

  • Tang Y, Wang S, Wu Q et al (2018) Recent decrease trend of atmospheric mercury concentrations in East China: the influence of anthropogenic emissions. Atmos Chem Phys 18(11):8279–8291

    Article  CAS  Google Scholar 

  • Tao S, Li C, Fan X et al (2012) Activated coke impregnated with cerium chloride used for elemental mercury removal from simulated flue gas. Chem Eng J 210:547–556

    Article  CAS  Google Scholar 

  • United Nations Environment Programme (UNEP) (2002) Sources, emissions, releases and environmental transport. Geneva

  • United Nations Environment Programme (UNEP) (2008) The global atmospheric mercury assessment: sources, emissions and transport. Geneva

  • United Nations Environment Programme (UNEP) (2013) Minamata convention on mercury. Kumamoto

  • United Nations Environment Programme (UNEP) (2013) Global mercury assessment 2013: sources, emissions, releases and environmental transport. Geneva

  • United Nations Environment Programme (UNEP) (2017) Draft guidance on best available techniques and best environmental practices taking into account any difference between new and existing sources and the need to minimize cross-media effects. UNEP, Geneva

    Google Scholar 

  • United States Environmental Protection Agency (USEPA) (2016) National emission standards for hazardous air pollutants from coal and oil-fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units. USEPA, Washington, DC

  • Vidic R, Siler D (2001) Vapor-phase elemental mercury adsorption by activated carbon impregnated with chloride and chelating agents. Carbon 39(1):3–14

    Article  CAS  Google Scholar 

  • Wang S, Zhang L, Wu Y et al (2010a) Synergistic mercury removal by conventional pollutant control strategies for coal-fired power plants in China. J Air Waste Manag Assoc 60(6):722–730

    Article  CAS  Google Scholar 

  • Wang J, Yang J, Liu Z (2010b) Gas-phase elemental mercury capture by a V2O5/AC catalyst. Fuel Process Technol 91(6):676–680

    Article  CAS  Google Scholar 

  • Wang Q, Cao L, Yang J (2018) Oxidation of gaseous elemental mercury under ultralow voltage in a foam titanium diffusion electrochemical reactor. Res Chem Intermed 44(4):2739–2749

    Article  CAS  Google Scholar 

  • Wiatros M, Sun C, Stevens L et al (2013) High capacity co-precipitated manganese oxides sorbents for oxidative mercury capture. Fuel 109(1):559–562

    Article  CAS  Google Scholar 

  • Wilcox J, Rupp E, Ying S et al (2012) Mercury adsorption and oxidation in coal combustion and gasification processes. Int J Coal Geol 90–91(2):4–20

    Article  CAS  Google Scholar 

  • Wu Q, Wang S, Li G et al (2016) Temporal trend and spatial distribution of speciated atmospheric mercury emissions in china during 1978–2014. Environ Sci Technol 50(24):13428–13435

    Article  CAS  Google Scholar 

  • Wu J, Zhao Z, Huang T et al (2017) Removal of elemental mercury by Ce-Mn co-modified activated carbon catalyst. Catal Commun 93:62–66

    Article  CAS  Google Scholar 

  • Wu Q, Wang S, Liu K et al (2018) Emission-limit-oriented strategy to control atmospheric mercury emissions in coal-fired power plants toward the implementation of the minamata convention. Environ Sci Technol 52(19):11087–11093

    Article  CAS  Google Scholar 

  • Xia T, Clack H (2017) Optical property measurements of mixed coal fly ash and particulate carbon aerosols likely emitted during activated carbon injection for mercury emissions control. Energy Fuels 31(11):11793–11801

    Article  CAS  Google Scholar 

  • Xing L, Xu Y, Zhong Q (2012) Mn and Fe modified fly ash as a superior catalyst for elemental mercury capture under air conditions. Energy Fuels 26(8):4903–4909

    Article  CAS  Google Scholar 

  • Xu Y, Zhong Q, Xing L (2014) Gas-phase elemental mercury removal from flue gas by cobalt-modified fly ash at low temperatures. Environ Technol 35(21–24):2870–2877

    Article  CAS  Google Scholar 

  • Xu Y, Zhong Q, Liu X (2015) Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature. J Hazard Mater 283:252–259

    Article  CAS  Google Scholar 

  • Yang J, Zhao Y, Zhang J et al (2016a) Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 1. Catalyst characterization and performance evaluation. Fuel 164(4):419–428

    CAS  Google Scholar 

  • Yang J, Zhao Y, Zhang J et al (2016b) Removal of elemental mercury from flue gas by recyclable CuCl2 modified magnetospheres catalyst from fly ash. Part 2. Identification of involved reaction mechanism. Fuel 167:366–374

    Article  CAS  Google Scholar 

  • Yang W, Liu Y, Wang Q et al (2017) Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation. Chem Eng J 326:169–181

    Article  CAS  Google Scholar 

  • Yang Z, Li H, Feng S et al (2018) Multiform sulfur adsorption centers and copper-terminated active sites of nano-CuS for efficient elemental mercury capture from coal combustion flue gas. Langmuir 34(30):8739–8749

    Article  CAS  Google Scholar 

  • Yao Y, Velpari V, Economy J (2014) Design of sulfur treated activated carbon fibers for gas phase elemental mercury removal. Fuel 116:560–565

    Article  CAS  Google Scholar 

  • Zhang L, Wang S, Wang L et al (2015a) Updated emission inventories for speciated atmospheric mercury from anthropogenic sources in China. Environ Sci Technol 49(5):3185–3194

    Article  CAS  Google Scholar 

  • Zhang B, Xu P, Qiu Y et al (2015b) Increasing oxygen functional groups of activated carbon with non-thermal plasma to enhance mercury removal efficiency for flue gases. Chem Eng J 263:1–8

    Article  CAS  Google Scholar 

  • Zhang Y, Jacob DJ, Horowitz H et al (2016a) Observed decrease in atmospheric mercury explained by global decline in anthropogenic emissions. Proc Natl Acad Sci USA 113(3):526–531

    Article  CAS  Google Scholar 

  • Zhang J, Duan Y, Zhou Q et al (2016b) Adsorptive removal of gas-phase mercury by oxygen non-thermal plasma modified activated carbon. Chem Eng J 294:281–289

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Z, Liu Z et al (2017a) Study on the mercury captured by mechanochemical and bromide surface modification of coal fly ash. Fuel 200(4):427–434

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang Z, Liu Z et al (2017b) Study on the mercury captured by mechanochemical and bromide surface modification of coal fly ash. Fuel 200:427–434

    Article  CAS  Google Scholar 

  • Zhao S, Qu Z, Yan N et al (2015a) Ag-modified AgI–TiO2 as an excellent and durable catalyst for catalytic oxidation of elemental mercury. RSC Adv 5(39):30841–30850

    Article  CAS  Google Scholar 

  • Zhao L, Li C, Zhang J et al (2015b) Promotional effect of CeO2 modified support on V2O5–WO3/TiO2 catalyst for elemental mercury oxidation in simulated coal-fired flue gas. Fuel 153(1):361–369

    Article  CAS  Google Scholar 

  • Zhao J, Li H, Yang Z et al (2018) Dual roles of nano-sulfide in efficient removal of elemental mercury from coal combustion flue gas within a wide temperature range. Environ Sci Technol 52(21):12926–12933

    Article  CAS  Google Scholar 

  • Zhou X, Cao L, Yang J (2018) Electro-chemical oxidation of gaseous elemental mercury via a gas diffusion reactor with Fenton-like catalyst. Res Chem Intermed 44(5):3597–3611

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was sponsored by National Key Research & Development Plan (2017YFC0210404) and National Science Foundation of China (21625701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingru Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 73 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wu, Q., Xu, L. et al. A Review on Adsorption Technologies for Mercury Emission Control. Bull Environ Contam Toxicol 103, 155–162 (2019). https://doi.org/10.1007/s00128-019-02648-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-019-02648-4

Keywords

Navigation