Skip to main content

Advertisement

Log in

Comparative Analysis of Transcriptional Profile Changes in Larval Zebrafish Exposed to Zinc Oxide Nanoparticles and Zinc Sulfate

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Many studies of the toxic effects of zinc oxide nanoparticles (ZnO NPs) in aquatic organisms have been performed because of increasing ZnO NP use. However, the toxicological pathways are not understood. In this study, ZnO NPs were found to be more toxic than ZnSO4 to zebrafish larvae, but ZnO NP toxicity did not involve transcript alterations. Biological processes affected by ZnO NPs and ZnSO4 were investigated by performing ingenuity pathway analysis on differently expressed genes in larvae exposed to sub-lethal ZnO NP and ZnSO4 concentrations. We identified upregulated and downregulated differently expressed genes in fish exposed to ZnO NPs and ZnSO4, and found that ZnO NPs slightly induced cell differentiation and pathways associated with the immune system and activated several key genes involved in cancer cell signaling. The results may be key to predicting and elucidating the mechanisms involved in ZnO NP and ZnSO4 toxicity in zebrafish larvae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aitken RJ, Chaudhry MQ, Boxall ABA, Hull M (2006) Manufacture and use of nanomaterials: current status in the UK and global trends. Occup Med 56:300–306

    Article  CAS  Google Scholar 

  • Berry JP, Gantar M, Gibbs PDL, Schmale MC (2007) The zebrafish (Danio rerio) embryo as a model system for identification and characterization of developmental toxins from marine and freshwater microalgae. Comp Biochem Physiol 145:61–72.

    Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M, Kahru A (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  Google Scholar 

  • Brun NR, Lenz M, Wehrli B, Fent K (2014) Comparative effects of zinc oxide nanoparticles and dissolved zinc on zebrafish embryos and eleuthero-embryos: importance of zinc ions. Sci Total Environ 476:657–666

    Article  Google Scholar 

  • Bystrzejewska-Piotrowska G, Golimowski J, Urban PL (2009) Nanoparticles: their potential toxicity, waste and environmental management. Waste Manage 29:2587–2595

    Article  CAS  Google Scholar 

  • Chen TH, Lin CC, Meng PJ (2014) Zinc oxide nanoparticles alter hatching and larval locomotor activity in zebrafish (Danio rerio). J Hazard Mater 277:134–140

    Article  CAS  Google Scholar 

  • El Badawy AM, Silva RG, Morris B, Scheckel KG, Suidan MT, Tolaymat TM (2010) Surface charge-dependent toxicity of silver nanoparticles. Environ Sci Technol 45:283–287

    Article  Google Scholar 

  • Felix LC, Ortega VA, Ede JD, Goss GG (2013) Physicochemical characteristics of polymer-coated metal-oxide nanoparticles and their toxicological effects on zebrafish (Danio rerio) development. Environ Sci Technol 47:6589–6596

    CAS  Google Scholar 

  • Fukui H, Horie M, Endoh S, Kato H, Fujita K, Nishio K, Komaba LK, Maru J, Miyauhi A, Kinugasa S, Yoshida Y, Hagihara Y, Iwahashi H (2012) Association of zinc ion release and oxidative stress induced by intratracheal instillation of ZnO nanoparticles to rat lung. Chem-Biol Interact 198:29–37

    Article  CAS  Google Scholar 

  • Gilbert B, Fakra SC, Xia T, Pokhrel S, Mädler L, Nel AE (2012) The fate of ZnO nanoparticles administered to human bronchial epithelial cells. ACS Nano 6:4921–4930

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43:9216–9222

    Article  CAS  Google Scholar 

  • Gottschalk F, Sonderer T, Scholz RW, Nowack B (2010) Possibility and limitations of modeling environmental exposure to engineered nanomaterials by probabilistic material flow analysis. Environ Toxicol Chem 29:1036–1048

    CAS  Google Scholar 

  • Griffitt RJ, Lavelle CM, Kane AS, Denslow ND, Barber DS (2013) Chronic nanoparticulate silver exposure results in tissue accumulation and transcriptomic changes in zebrafish. Aquat Toxicol 130–131:192–200

    Article  Google Scholar 

  • Hill AJ, Howard CV, Cossins AR (2002) Efficient embedding technique for preparing small specimens for stereological volume estimation: Zebrafish larvae. J Microsc 206:179–181

    Article  CAS  Google Scholar 

  • Jiang J, Oberdörster G, Elder A, Gelein R, Mercer P, Biswas P (2008) Does nanoparticle activity depend upon size and crystal phase?. Nanotoxicology 2:33–42

    Article  CAS  Google Scholar 

  • Kao YY, Chen YC, Cheng TJ, Chiung YM, Liu PS (2012) Zinc oxide nanoparticles interfere with zinc ion homeostasis to cause cytotoxicity. Toxicol Sci 125:462–472

    Article  CAS  Google Scholar 

  • Lee JH, Ju JE, Kim BI, Pak PJ, Choi EK, Lee HS, Chung N (2014) Rod-shaped iron oxide nanoparticles are more toxic than sphere-shaped nanoparticles to murine macrophage cells. Environ Toxicol Chem 33:2759–2766

    Article  CAS  Google Scholar 

  • Lin S, Zhao Y, Nel AE, Lin S (2013) Zebrafish: an in vivo model for nano EHS studies. Small 9:1608–1618

    Article  CAS  Google Scholar 

  • Long Y, Li L, Li Q, He X, Cui Z (2012) Transcriptomic characterization of temperature stress responses in larval zebrafish. PloS ONE 7:e37209.

    Article  CAS  Google Scholar 

  • Markman B, Ramos FJ, Capdevila J, Tabernero J (2010) EGFR and KRAS in colorectal cancer. Adv Clin Chem 51:71–119

    Article  CAS  Google Scholar 

  • Misale S, Yaeger R, Hobor S, Scala E, Janakiraman M, Liska D, Valtorta E, Schiavo R, Buscarino M, Siravegna G, Bencardino K, Cercek A, Chen CT, Veronese S, Zanon C, Sartore-Bianchi A, Gambacorta M, Gallicchio M, Vakiani E, Boscaro V, Medico E, Weiser M, Siena S, Di Nicolantonio F, Solit D, Bardelli A (2012) Emergence of KRAS mutations and acquired resistance to anti-EGFR therapy in colorectal cancer. Nature 486:532–536

    CAS  Google Scholar 

  • Pandurangan M, Jin BY, Kim DH (2016) ZnO Nanoparticles upregulates adipocyte differentiation in 3T3-L1 cells. Biol Trace Elem Res 170:201–207

    Article  CAS  Google Scholar 

  • Saptarshi SR, Feltis BN, Wright PFA, Lopata AL (2015) Investigating the immunomodulatory nature of zinc oxide nanoparticles at sub-cytotoxic levels in vitro and after intranasal instillation in vivo. J Nanobiotechnol 13:6

    Article  Google Scholar 

  • Schins RPF, Albrecht C, Gerloff K, van Berlo D (2012) Genotoxicity investigations with carbon nanotubes. In: Donaldson K, Poland CA, Duffin R, Bonner J (eds) The toxicology of carbon nanotubes. Cambridge University Press, New York, pp 153–160

    Google Scholar 

  • Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185:211–218

    Article  CAS  Google Scholar 

  • Shen C, James SA, de Jonge MD, Turney TW, Wright PFA, Feltis BN (2013) Relating cytotoxicity, zinc ions, and reactive oxygen in ZnO nanoparticle-exposed human immune cells. Toxicol Sci 136:120–130

    Article  CAS  Google Scholar 

  • Shvedova AA, Yanamala N, Kisin ER, Tkach AV, Murray AR, Hubbs A, Chirila MM, Keohavong P, Sycheva LP, Kagan VE, Castranova V (2014) Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons. Am J Physiol 306:L170–L182

    CAS  Google Scholar 

  • Suda K, Tomizawa K, Mitsudomi T (2010) Biological and clinical significance of KRAS mutations in lung cancer: an oncogenic driver that contrasts with EGFR mutation. Cancer Metastasis Rev 29:49–60

    Article  CAS  Google Scholar 

  • Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci 98:5116–5121

    Article  CAS  Google Scholar 

  • Ung CY, Lam SH, Hlaing MM, Winata CL, Korzh S, Mathavan S, Gong Z (2010) Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation. BMC Genom 11(1):212

    Article  Google Scholar 

  • Westerfield M (1995) The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene

    Google Scholar 

  • Xia T, Zhao Y, Sager T, George S, Pokhrel S, Li N, Li N, Schoenfeld D, Meng H, Lin S, Wang X, Wang M, Ji Z, Zink JI, Madler L, Castranova V, Lin S, Nel AE (2011) Decreased dissolution of ZnO by iron doping yields nanoparticles with reduced toxicity in the rodent lung and zebrafish embryos. ACS Nano 5:1223–1235

    Article  CAS  Google Scholar 

  • Xiong D, Fang T, Yu L, Sima X, Zhu W (2011) Effects of nano-scale TiO2, ZnO and their bulk counterparts on zebrafish: Acute toxicity, oxidative stress and oxidative damage. Sci Total Environ 409:1444–1452

    Article  CAS  Google Scholar 

  • Zhao X, Wang S, Wu Y, You H, Lv L (2013) Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol 136–137:49–59

    Article  Google Scholar 

  • Zhou J, Chen GB, Tang YC, Sinha RA, Wu Y, Yap CS, Wang G, Hu J, Xia X, Tan P, Goh LK, Yen PM (2012) Genetic and bioinformatic analyses of the expression and function of PI3K regulatory subunit PIK3R3 in an Asian patient gastric cancer library. BMC Med Genomics 5:34

    Article  CAS  Google Scholar 

  • Zhou Z, Son J, Harper B, Zhou Z, Harper S (2015) Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish. Beilstein J Nanotechnol 20:1568–1579

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported through grants KK-1608 and KK-1610-04 provided by the Korea Institute of Toxicology (KIT, Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo-Keun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, RO., Choi, J.S., Kim, BC. et al. Comparative Analysis of Transcriptional Profile Changes in Larval Zebrafish Exposed to Zinc Oxide Nanoparticles and Zinc Sulfate. Bull Environ Contam Toxicol 98, 183–189 (2017). https://doi.org/10.1007/s00128-016-1995-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-016-1995-0

Keywords

Navigation