Skip to main content
Log in

Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a postcollisional setting: examples from the Sanjiang region, SW China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Magmatic sources of porphyry deposits in postcollisional settings remain controversial. We have used new and published petrological and geochemical data for the Eocene–Oligocene porphyry Cu ± Mo ± Au deposits in the Sanjiang region, SW China, to address this outstanding issue. New data for three deposits (Machangqing, Tongchang, and Beiya) in the Ailaoshan–Red River porphyry Au-Cu-Mo belt (southern part of the Sanjiang region) suggest that ore-forming porphyries were emplaced at ~ 35 Ma, have high (87Sr/86Sr)i (0.7068–0.7071) and negative εNd(t) (− 6.9 to − 5.0), low zircon εHf(t) (− 5.3 to 4.5), and relatively high δ18O (5.9–9.0‰). Magmatic amphibole phenocryst compositions indicate that the parental magmas are all relatively oxidized (ΔFMQ = 1.7 ± 0.6), and H2O-rich (3.8 ± 0.3 wt% H2O). These results are consistent with those estimated from zircon compositions (ΔFMQ = 1.8 ± 0.8) and high whole-rock Sr/Y ratios (75 ± 31), respectively. Based on the new and published data, we suggest that the parental magmas for the Ailaoshan–Red River porphyry Au-Cu-Mo belt were derived from a preserved juvenile arc lower-crust and the underlying metasomatized subcontinental lithospheric mantle (SCLM) attributed to a Neoproterozoic subduction event, whereas the parental magmas for the Yulong porphyry Cu-Mo belt (northern part of the Sanjiang region) originated from the Permian–Triassic juvenile arc lower-crust and metasomatized SCLM. Additionally, parental magmas for these porphyry deposits are all oxidized and H2O-rich, and we attribute such characteristics to inheritance from mixed mantle-crust sources that were modified by previous oceanic slab subduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Arculus RJ (1994) Aspects of magma genesis in arcs. Lithos 33:189–208

    Google Scholar 

  • Baker M, Hirschmann M, Ghiorso M, Stolper E (1995) Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375:308–311

    Google Scholar 

  • Ballard JR, Palin JM, Campbell IH (2002) Relative oxidation states of magmas inferred from Ce(IV)/Ce(III) in zircon: application to porphyry copper deposits of northern Chile. Contrib Mineral Petrol 144:347–364

    Google Scholar 

  • Bao X-S, He W-Y, Gao X (2017) The Beiya gold deposit: constraint from water-rich magmas to mineralization. Acta Petrol Sin 33:2175–2188 (in Chinese with English abstract)

    Google Scholar 

  • Behrens H, Misiti V, Freda C, Vetere F, Botcharnikov RE, Scarlato P (2009) Solubility of H2O and CO2 in ultrapotassic melts at 1200 and 1250 C and pressure from 50 to 500 MPa. Am Mineral 94:105–120

    Google Scholar 

  • Bell AS, Simon A (2011) Experimental evidence for the alteration of the Fe3+/ΣFe of silicate melt caused by the degassing of chlorine-bearing aqueous volatiles. Geology 39:499–502

    Google Scholar 

  • Bi X-W, Hu R-Z, Cornell D (2004) The alkaline porphyry associated Yao’an gold deposit, Yunnan, China: rare earth element and stable isotope evidence for magmatic-hydrothermal ore formation. Mineral Deposita 39:21–30

    Google Scholar 

  • Bi X-W, Hu R-Z, Peng J-T, Wu K-X, Su W-C, Zhan X-Z (2005) Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions. Acta Petrol Sin 21:113–124 (in Chinese with English abstract)

    Google Scholar 

  • Bi X-W, Hu R-Z, Hanley JJ, Mungall J, Peng J-T, Shang L-B, Wu K-X, Suang Y, Li H-L, Hu X-Y (2009) Crystallisation conditions (T, P, fO2) from mineral chemistry of Cu- and Au-mineralised alkaline intrusions in the Red River-Jinshajiang alkaline igneous belt, western Yunnan Province, China. Mineral Petrol 96:43–58

    Google Scholar 

  • Brounce MN, Kelley KA, Cottrell E (2014) Variations in Fe3+/∑Fe of mariana arc basalts and mantle wedge fO2. J Petrol 55:2513–2536

    Google Scholar 

  • Brounce M, Stolper E, Eiler J (2017) Redox variations in Mauna Kea lavas, the oxygen fugacity of the Hawaiian plume, and the role of volcanic gases in Earth’s oxygenation. Proc Natl Acad Sci 114:8997–9002

    Google Scholar 

  • Burnham CW (1979) Magmas and hydrothermal fluids, in Barnes, H.L., ed., Geochemistry of hydrothermal ore deposits, 2nd ed.: New York, John Wiley and Sons pp.71–136

  • Campbell IH, Stepanov AS, Liang H-Y, Allen CM, Norman MD, Zhang Y-Q, Xie Y-W (2014) The origin of shoshonites: new insights from the Tertiary high-potassium intrusions of eastern Tibet. Contrib Mineral Petrol 167:1–22

    Google Scholar 

  • Cao M-J, Hollings P, Cooke DR, Evans NJ, McInnes BI, Qin K-Z, Li G-M, Sweet G, Baker M (2018) Physicochemical processes in the magma chamber under the black mountain porphyry Cu-Au deposit, Philippines: insights from mineral chemistry and implications for mineralization. Econ Geol 113:63–82

    Google Scholar 

  • Cawood PA, Zhao G-C, Yao J-L, Wang W, Xu Y-J, Wang Y-J (2018) Reconstructing South China in Phanerozoic and Precambrian supercontinents. Earth-Sci Rev 186:173–194

    Google Scholar 

  • Chang J, Li J-W, Selby D, Liu J-C, Deng X-D (2017) Geological and chronological constraints on the long-lived eocene yulong porphyry Cu-Mo deposit, Eastern Tibet: implications for the lifespan of giant porphyry Cu deposits. Econ Geol 112:1719–1746

    Google Scholar 

  • Chelle-Michou C, Chiaradia M (2017) Amphibole and apatite insights into the evolution and mass balance of Cl and S in magmas associated with porphyry copper deposits. Contrib Mineral Petrol 172:105

    Google Scholar 

  • Chiaradia M, Merino D, Spikings R (2009) Rapid transition to long-lived deep crustal magmatic maturation and the formation of giant porphyry-related mineralization (Yanacocha, Peru). Earth Planet Sci Lett 288:505–515

    Google Scholar 

  • Chiaradia M, Ulianov A, Kouzmanov K, Beate B (2012) Why large porphyry Cu deposits like high Sr/Y magmas? Sci Reports 2:685

    Google Scholar 

  • Chiaradia M (2021) Magmatic controls on metal endowments of porphyry Cu-Au deposits. SEG Spec Publ 24:1–16

    Google Scholar 

  • Chou IM (1978) Calibration of oxygen buffers at elevated-P and elevated-T using hydrogen fugacity sensor. Am Mineral 63:690–703

    Google Scholar 

  • Chung S-L, Lee T-Y, Lo C-H, Wang P-L, Chen C-Y, Yem N-T, Hoa T-T, Wu G-Y (1997) Intraplate extension prior to continental extrusion along the Ailao Shan Red River shear zone. Geology 25:311–314

    Google Scholar 

  • Chung S-L, Liu D, Ji J, Chu M-F, Lee H-Y, Wen D-J, Lo C-H, Lee T-Y, Qian Q, Zhang Q (2003) Adakites from continental collision zones: melting of thickened lower crust beneath southern Tibet. Geology 31:1021–1024

    Google Scholar 

  • Chung S-L, Chu M-F, Zhang Y, Xie Y, Lo C-H, Lee T-Y, Lan C-Y, Li X, Zhang Q, Wang Y (2005) Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Sci Rev 68:73–196

    Google Scholar 

  • Collins WJ, Huang H-Q, Jiang X (2016) Water-fluxed crustal melting produces Cordilleran batholiths. Geology 44:143–146

    Google Scholar 

  • Cooke DR, Hollings P, Walsh JL (2005) Giant porphyry deposits: characteristics, distribution, and tectonic controls. Econ Geol 100:801–818

    Google Scholar 

  • Cottrell E, Kelley KA (2011) The oxidation state of Fe in MORB glasses and the oxygen fugacity of the upper mantle. Earth Planet Sci Lett 305:270–282

    Google Scholar 

  • Davidson J, Turner S, Handley H, Macpherson C, Dosseto A (2007) Amphibole “sponge” in arc crust? Geology 35:787–790

    Google Scholar 

  • Deng J, Wang Q-F, Li G-J, Li C-S, Wang C-M (2014) Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Res 26:419–437

    Google Scholar 

  • Deng J, Wang Q-F, Li G-J, Santosh M (2014) Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Sci Rev 138:268–299

    Google Scholar 

  • Deng J, Wang Q-F, Li G-J, Hou Z-Q, Jiang C-Z, Danyushevsky L (2015) Geology and genesis of the giant Beiya porphyry-skarn gold deposit, northwestern Yangtze Block, China. Ore Geol Rev 70:457–485

    Google Scholar 

  • Deng W-M (1998) Cenozoic intraplate volcanic rocks in the Northern Qinghai–Xizang (Tibetan) plateau. Beijing, Geological Publishing House, 180 p. (in Chinese with English abstract)

  • Ding L, Kapp P, Zhong D-L, Deng W-M (2003) Cenozoic volcanism in Tibet: evidence for a transition from oceanic to continental subduction. J Petrol 44:1833–1865

    Google Scholar 

  • Eiler JM (2001) Oxygen isotope variations of basaltic lavas and upper mantle rocks. Rev Mineral Geochem 43:319–364

    Google Scholar 

  • Evans KA, Tomkins AG (2011) The relationship between subduction zone redox budget and arc magma fertility. Earth Planet Sci Lett 308:401–409

    Google Scholar 

  • Ferry J, Watson E (2007) New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib Mineral Petrol 154:429–437

    Google Scholar 

  • Gregory RT, Taylor HP (1981) An oxygen isotope profile in a section of Cretaceous oceanic crust, Samail Ophiolite, Oman: evidence for δ18O buffering of the oceans by deep (>5 km) seawater-hydrothermal circulation at mid-ocean ridges. J Geophys Res 86:2737–2755

    Google Scholar 

  • Griffin WL, Begg GC, O’Reilly SY (2013) Continental-root control on the genesis of magmatic ore deposits. Nat Geosci 6:905–910

    Google Scholar 

  • Grocke SB, Cottrell E, de Silva S, Kelley KA (2016) The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth Planet Sci Lett 440:92–104

    Google Scholar 

  • Guo Z-F, Hertogen J, Liu J-Q, Pasteels P, Boven A, Punzalan L, He H-Y, Luo X-J, Zhang W-H (2005) Potassic magmatism in western Sichuan and Yunnan Provinces, SE Tibet, China: Petrological and geochemical constraints on petrogenesis. J Petrol 46:33–78

    Google Scholar 

  • Guo Z-F, Wilson M, Liu J-Q, Mao Q (2006) Post-collisional, potassic and ultrapotassic magmatism of the northern tibetan plateau: constraints on characteristics of the mantle source, geodynamic setting and uplift mechanisms. J Petrol 47:1177–1220

    Google Scholar 

  • Guynn JH, Kapp P, Pullen A, Heizler M, Gehrels G, Ding L (2006) Tibetan basement rocks near Amdo reveal “missing” Mesozoic tectonism along the Bangong suture, central Tibet. Geology 34:505–508

    Google Scholar 

  • Hao J-H, Chen J-P, Dong Q-J, Tian Y-G, Li Y-C, Chen D (2012) Zircon LA-ICPMS U-Pb dating for Narigongma porphyry Mo–Cu deposit in southern Qinghai province and its geological implication. Geosci 26:45–53 (in Chinese with English abstract)

    Google Scholar 

  • He W-Y, Mo X-X, Yu X-H, Li Y, Huang X-K, He Z-H (2011) Geochronological study of magmatic intrusions and mineralization of Machangqing porphyry Cu–Mo–Au deposit, western Yunnan Province. Earth Sci Front 1:207–215 (in Chinese with English abstract)

    Google Scholar 

  • He W-Y, Mo X-X, He Z-H, White NC, Chen J-B, Yang K-H, Wang R, Yu X-H, Dong G-C, Huang X-F (2015) The geology and mineralogy of the Beiya skarn gold deposit in Yunanan, southwest China. Econ Geol 110:1625–1641

    Google Scholar 

  • He W-Y, Mo X-X, Yang L-Q, Xing Y-L, Dong G-C, Yang Z, Gao X, Bao X-S (2016) Origin of the Eocene porphyries and mafic microgranular enclaves from the Beiya porphyry Au polymetallic deposit, western Yunnan, China: implications for magma mixing/mingling and mineralization. Gondwana Res 40:230–248

    Google Scholar 

  • Heinrich C, Günther D, Audétat A, Ulrich T, Frischknecht R (1999) Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27:755–758

    Google Scholar 

  • Hildreth W, Moorbath S (1988) Crustal contributions to arc magmatism in the Andes of central Chile. Contrib Mineral Petrol 98:455–489

    Google Scholar 

  • Holwell DA, Fiorentini M, McDonald I, Lu Y-J, Giuliani A, Smith DJ, Keith M, Locmelis M (2019) A metasomatized lithospheric mantle control on the metallogenic signature of post-subduction magmatism. Nat Commun 10:3511

    Google Scholar 

  • Hou Z-Q, Ma H-W, Zaw K, Zhang Y-Q, Wang M-J, Wang Z, Pan G-T, Tang R-L (2003) The Himalayan Yulong porphyry copper belt: product of large-scale strike slip faulting in eastern Tibet. Econ Geol 98:125–145

    Google Scholar 

  • Hou Z-Q, Gao Y-F, Qu X-M, Rui Z-Y, Mo X-X (2004) Origin of adakitic intrusives generated during mid-Miocene east–west extension in southern Tibet. Earth Planet Sci Lett 220:139–155

    Google Scholar 

  • Hou Z-Q, Zeng P-S, Gao Y-F, Du A-D, Fu D-M (2006) Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: constraints from Re-Os dating of molybdenite. Mineral Deposita 41:33–45

    Google Scholar 

  • Hou Z-Q, Zaw K, Pan G-T, Mo X-X, Xu Q, Hu Y-Z, Li X-Z (2007) Sanjiang Tethyan metallogenesis in SW China: tectonic setting, metallogenic epochs and deposit types. Ore Geol Rev 31:48–87

    Google Scholar 

  • Hou Z-Q, Xie Y-L, Xu W-Y, Li Y-Q, Huang W, Luobu C-R (2007) Yulong deposit, East Tibet: a high-sulfidation Cu–Au porphyry Cu deposit in the eastern Indo-Asian collision zone. Int Geol Rev 49:235–259

    Google Scholar 

  • Hou Z-Q, Zhang H-R, Pan X-F, Yang Z-M (2011) Porphyry Cu (-Mo-Au) deposits related to melting of thickened mafic lower crust: examples from the eastern Tethyan metallogenic domain. Ore Geol Rev 39:21–45

    Google Scholar 

  • Hou Z-Q, Zheng Y-C, Yang Z-M, Rui Z-Y, Zhao Z-D, Jiang S-H, Qu X-M, Sun Q-Z (2013) Contribution of mantle components within juvenile lower-crust to collisional zone porphyry Cu systems in Tibet. Mineral Deposita 48:173–192

    Google Scholar 

  • Hou Z-Q, Yang Z-M, Lu Y-J, Kemp A, Zheng Y-C, Li Q-Y, Tang J-X, Yang Z-S, Duan L-F (2015) A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology 43:247–250

    Google Scholar 

  • Hou Z, Duan L, Lu Y, Zheng Y, Zhu D, Yang Z, Yang Z, Wang B, Pei Y, Zhao Z, McCuaig TC (2015) Lithospheric architecture of the lhasa terrane and its control on ore deposits in the Himalayan-Tibetan Orogen. Econ Geol 110:1541–1575

    Google Scholar 

  • Hou Z-Q, Zhou Y, Wang R, Zheng Y-C, He W-Y, Zhao M, Evans NJ, Weinberg RF (2017) Recycling of metal-fertilized lower continental crust: origin of non-arc Au-rich porphyry deposits at cratonic edges. Geology 45:563–566

    Google Scholar 

  • Hou Z-Q, Wang T (2018) Isotopic mapping and deep material probing (II): imaging crustal architecture and its control on mineral systems. Earth Sci Front 25:20–41 (in Chinese with English abstract)

    Google Scholar 

  • Hou Z, Wang R (2019) Fingerprinting metal transfer from mantle. Nat Commun 10:1

    Google Scholar 

  • Hronsky JMA, Groves DI, Loucks RR, Begg GC (2012) A unified model for gold mineralisation in accretionary orogens and implications for regional-scale exploration targeting methods. Mineral Deposita 47:339–358

    Google Scholar 

  • Hu R-Z, Burnard PG, Turner G, Bi X-W (1998) Helium and Argon isotope systematics in fluid inclusions of Machangqing copper deposit in west Yunnan province, China. Chem Geol 146:55–63

    Google Scholar 

  • Hu R-Z, Burnard PG, Bi X-W, Zhou M-F, Pen J-T, Su W-C, Wu K-X (2004) Helium and argon isotope geochemistry of alkaline intrusion-associated gold and copper deposits along the Red River-Jinshajiang fault belt, SW China. Chem Geol 203:305–317

    Google Scholar 

  • Huang M-L, Bi X-W, Gao J-F, Hu R-Z, Xu L-L, Zhu J-J (2019) Geochemistry, in-situ Sr-Nd-Hf-O isotopes, and mineralogical constraints on origin and magmatic-hydrothermal evolution of the Yulong porphyry Cu-Mo deposit, Eastern Tibet. Gondwana Res 76:98–114

    Google Scholar 

  • Huang M-L, Bi X-W, Richards JP, Hu R-Z, Xu L-L, Gao J-F, Zhu JJ, Zhang X-C (2019) High water contents of magmas and extensive fluid exsolution during the formation of the Yulong porphyry Cu-Mo deposit, eastern Tibet. J Asian Earth Sci 176:168–183

    Google Scholar 

  • Huang X-L, Niu Y-L, Xu Y-G, Chen L-L, Yang Q-J (2010) Mineralogical and geochemical constraints on the petrogenesis of post-collisional potassic and ultrapotassic rocks from Western Yunnan, SW China. J Petrol 51:1617–1654

    Google Scholar 

  • Irvine T, Baragar W (1971) A guide to the chemical classification of the common volcanic rocks. Can J Earth Sci 8:523–548

    Google Scholar 

  • Jahn B-M, Wu F-Y, Capdevila R, Fourcade S, Wang Y-X, Zhao Z-H (2001) Highly evolved juvenile granites with tetrad REE patterns: the Woduhe and Baerzhe granites from the Great Xing’an (Khingan) Mountains in NE China. Lithos 59:171–198

    Google Scholar 

  • Jahn B-M, Wu F-Y, Lo C-H, Tsai C-H (1999) Crust-mantle interaction induced by deep subduction of the continental crust: Geochemical and Sr-Nd isotopic evidence from post-collisional mafic–ultramafic intrusions of the northern Dabie complex, central China. Chem Geol 157:119–146

    Google Scholar 

  • Jian P, Liu D-Y, Kröner A, Zhang Q, Wang Y-Z, Sun XM, Zhang W (2009) Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in southwest China (II): insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos 113:767–784

    Google Scholar 

  • Jiang Y-H, Jiang S-Y, Ling H-F, Dai B-Z (2006) Low-degree melting of metasomatized lithospheric mantle for the origin of Cenozoic Yulong monzogranite-porphyry, east Tibet: geochemical and Sr–Nd–Pb–Hf isotopic constraints. Earth Planet Sci Lett 241:617–633

    Google Scholar 

  • Jugo PJ, Luth RW, Richards JP (2005) Experimental data on the speciation of sulfur as a function of oxygen fugacity in basaltic melts. Geochim Cosmochim Acta 69:497–503

    Google Scholar 

  • Jugo PJ (2009) Sulfur content at sulfide saturation in oxidized magmas. Geology 37:415–418

    Google Scholar 

  • Kapp P, DeCelles PG, Gehrels GE, Heizler M, Ding L (2007) Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. Geol Soc Am Bull 119:917–933

    Google Scholar 

  • Kelley KA, Cottrell E (2012) The influence of magmatic differentiation on the oxidation state of Fe in a basaltic arc magma. Earth Planet Sci Lett 329:109–121

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ (2003) Granitic perspectives on the generation and secular evolution of the continental crust. Treatise Geochem 3:349–410

    Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon. Science 315:980–983

    Google Scholar 

  • Li J-X, Qin K-Z, Li G-M, Cao M-J, Xiao B, Chen L, Zhao J-X, Evans NJ, McInnes BIA (2012) Petrogenesis and thermal history of the Yulong porphyry copper deposit, Eastern Tibet: insights from U-Pb and U-Th/He dating, and zircon Hf isotope and trace element analysis. Mineral Petrol 105:201–221

    Google Scholar 

  • Li W-C, Wang J-H, He Z-H, Dou S (2016) Formation of Au-polymetallic ore deposits in alkaline porphyries at Beiya, Yunnan, Southwest China. Ore Geol Rev 73:241–252

    Google Scholar 

  • Li WK, Yang ZM, Cao K, Lu YJ, Sun MY (2019) Redox-controlled generation of the giant porphyry Cu–Au deposit at Pulang, southwest China. Contrib Mineral Petrol 174:12

    Google Scholar 

  • Li WK, Yang ZM, Chiaradia M, Lai Y, Yu C, Zhang JY (2020) Redox state of southern Tibetan upper mantle and ultrapotassic magmas. Geology 48:733–736

    Google Scholar 

  • Li Z-X (1998) Tectonic history of the major East Asian lithospheric Blocks since the mid-Proterozoic—a synthesis. Geodynamics Seri, Am Geophys Union 27:221–243

    Google Scholar 

  • Liang H-Y, Campbell IH, Allen C, Sun W-D, Liu C-Q, Yu H-X, Xie Y-W, Zhang Y-Q (2006) Zircon Ce4+/Ce3+ ratios and ages for Yulong ore-bearing porphyries in eastern Tibet. Mineral Deposita 41:152–159

    Google Scholar 

  • Liang H-Y, Sun W, Su W-C, Zartman RE (2009) Porphyry copper-gold mineralization at Yulong, China, promoted by decreasing redox potential during magnetite alteration. Econ Geol 104:587–596

    Google Scholar 

  • Lin B, Wang L-Q, Tang J-X, Song Y, Zhou X, Liu Z-B, Gao Y-M, Tang X-Q, Xu R-G, Chen Z-J (2017) Zircon U-Pb geochronology of ore-bearing porphyries in Baomai deposit, Yulong copper belt. Tibet Earth Sci 42:1454–1471 (in Chinese with English abstract)

    Google Scholar 

  • Lin B, Wang L-Q, Tang J-X, Song Y, Cao H-W, Baker MJ, Zhang L-J, Zhou X (2018) Geology, geochronology, geochemical characteristics and origin of Baomai porphyry Cu (Mo) deposit, Yulong Belt. Tibet Ore Geol Rev 92:186–204

    Google Scholar 

  • Locock AJ (2014) An Excel spreadsheet to classify chemical analyses of amphiboles following the IMA 2012 recommendations. Comput Geosci 62:1–11

    Google Scholar 

  • Loucks RR, Fiorentini ML, Henríquez GJ (2020) New magmatic oxybarometer using trace elements in zircon. J Petrol 61.https://doi.org/10.1093/petrology/egaa034

  • Logan JM, Mihalynuk MG (2014) Tectonic Controls on Early Mesozoic Paired Alkaline Porphyry Deposit Belts (Cu-Au +/- Ag-Pt-Pd-Mo) Within the Canadian Cordillera. Econ Geol 109:827–858

    Google Scholar 

  • Lu Y-J, Kerrich R, Cawood PA, McCuaig TC, Hart CJR, Li Z-X, Hou Z-Q, Bagas L (2012) Zircon SHRIMP U-Pb geochronology of potassic felsic intrusions in western Yunnan, SW China: Constraints on the relationship of magmatism to the Jinsha suture. Gondwana Res 22:737–747

    Google Scholar 

  • Lu Y-J, Kerrich R, Kemp AIS, McCuaig TC, Hou Z-Q, Hart CJR, Li Z-X, Cawood PA, Bagas L, Yang Z-M, Cliff J, Belousova EA, Jourdan F, Evans NJ (2013) Intracontinental Eocene-Oligocene porphyry Cu mineral systems of Yunnan, Western Yangtze Craton, China: compositional characteristics, sources, and implications for continental collision metallogeny. Econ Geol 108:1541–1576

    Google Scholar 

  • Lu Y-J, Kerrich R, McCuaig TC, Li Z-X, Hart CJR, Cawood PA, Hou Z-Q, Bagas L, Cliff J, Belousova EA, Tang S-H (2013) Geochemical, Sr-Nd-Pb, and zircon Hf-O isotopic compositions of Eocene-Oligocene Shoshonitic and Potassic Adakite-like Felsic Intrusions in Western Yunnan, SW China: Petrogenesis and Tectonic Implications. J Petrol 54:1309–1348

    Google Scholar 

  • Lu Y-J, Loucks RR, Fiorentini ML, Yang Z-M, Hou Z-Q (2015) Fluid flux melting generated postcollisional high Sr/Y copper ore-forming water-rich magmas in Tibet. Geology 43:583–586

    Google Scholar 

  • Lu Y-J, McCuaig TC, Li Z-X, Jourdan F, Hart CJR, Hou Z-Q, Tang S-H (2015) Paleogene post-collisional lamprophyres in western Yunnan, western Yangtze Craton: Mantle source and tectonic implications. Lithos 233:139–161

    Google Scholar 

  • Lu Y-J, Loucks RR, Fiorentini M, McCuaig TC, Evans NJ, Yang Z-M, Hou Z-Q, Kirkland CL, Parra-Avila LA, Kobussen A (2016) Zircon compositions as a pathfinder for porphyry Cu±Mo±Au deposits. Soc Econ Geol Spec Publ 19:329–347

    Google Scholar 

  • Macpherson CG (2008) Lithosphere erosion and crustal growth in subduction zones: insights from initiation of the nascent East Philippine Arc. Geology 36:311–314

    Google Scholar 

  • Mao J-W, Zhang Z-C, Zhang Z-H, Du A-D (1999) Re-Os isotopic dating of molybdenites in the Xiaoliugou W (Mo) deposit in the northern Qilian mountains and its geological significance. Geochim Cosmochim Acta 63:1815–1818

    Google Scholar 

  • Mao J-W, Zhou Y-M, Liu H, Zhang C-Q, Fu D-G, Liu B (2017) Metallogenic setting and ore genetic model for the Beiya porphyry-skarn polymetallic Au orefield, western Yunnan, China. Ore Geol Rev 86:21–34

    Google Scholar 

  • McInnes BI, McBride JS, Evans NJ, Lambert DD, Andrew AS (1999) Osmium isotope constraints on ore metal recycling in subduction zones. Science 286:512–516

    Google Scholar 

  • Meng X-Y, Mao J-W, Zhang C-Q, Zhang D-Y, Liu H (2018) Melt recharge, fO2-T conditions, and metal fertility of felsic magmas: zircon trace element chemistry of Cu-Au porphyries in the Sanjiang orogenic belt, southwest China. Mineral Deposita 53:649–663

    Google Scholar 

  • Metcalfe I (2002) Permian tectonic framework and palaeogeography of SE Asia. J Asian Earth Sci 20:551–566

    Google Scholar 

  • Metcalfe I (2006) Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Res 9:24–46

    Google Scholar 

  • Metcalfe I (2013) Gondwana dispersion and Asian accretion: tectonic and palaeogeographic evolution of eastern Tethys. J Asian Earth Sci 66:1–33

    Google Scholar 

  • Middlemost EA (1994) Naming materials in the magma/igneous rock system. Earth-Sci Rev 37:215–224

    Google Scholar 

  • Mo X-X, Deng J-F, Lu F-X (1994) Volcanism and the evolution of Tethys in Sanjiang area, southwestern China. J Southeast Asian Earth Sci 9:325–333

    Google Scholar 

  • Mungall JE (2002) Roasting the mantle: Slab melting and the genesis of major Au and Au-rich Cu deposits. Geology 30:915–918

    Google Scholar 

  • Muñoz M, Charrier R, Fanning CM, Maksaev V, Deckart K (2012) Zircon trace element and O-Hf isotope analyses of mineralized intrusions from El Teniente ore deposit, Chilean Andes: constraints on the source and magmatic evolution of porphyry Cu–Mo related magmas. J Petrol 53:1091–1122

    Google Scholar 

  • Murakami H, Seo JH, Heinrich CA (2010) The relation between Cu/Au ratio and formation depth of porphyry-style Cu-Au +/- Mo deposits. Mineral Deposita 45:11–21

    Google Scholar 

  • Mutch E, Blundy J, Tattitch B, Cooper F, Brooker R (2016) An experimental study of amphibole stability in low-pressure granitic magmas and a revised Al-in-hornblende geobarometer. Contrib Mineral Petrol 171:85

    Google Scholar 

  • O’Neill HS, Pownceby MI (1993) Thermodynamic data from redox reactions at high-temperatures. 1. An experimental and theoretical assessment of the electrochemical method using stabilized zirconia electrolytes, with revised values for the Fe-FeO, CO-COO, Ni-NiO and Cu-Cu2O oxygen buffers, and new data for the W-WO2 buffer. Contrib Mineral Petrol 114:296–314

    Google Scholar 

  • O’Neill HS (1987) Quartz-Fayalite-Iron and Quartz-Fayalite-Magnetite equilibria and the free-energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am Mineral 72:67–75

    Google Scholar 

  • Pan G-T, Ding J, Yao D-S, Wang L-Q (2004) Guidebook of 1:1,500,000 geologic map of the Qinghai-Xizang (Tibet) plateau and adjacent areas 1–148. Cartographic Publishing House, Chengdu, China

    Google Scholar 

  • Park J-W, Campbell IH, Chiaradia M, Hao H, Lee C-T (2021) Crustal magmatic controls on the formation of porphyry copper deposits. Nat Rev Earth Environ 2:542–557

    Google Scholar 

  • Plank T, Kelley KA, Zimmer MM, Hauri EH, Wallace PJ (2013) Why do mafic arc magmas contain ~4 wt% water on average? Earth Planet Sci Lett 364:168–179

    Google Scholar 

  • Pullen A, Kapp P, Gehrels GE, Vervoort JD, Ding L (2008) Triassic continental subduction in central Tibet and Mediterranean-style closure of the Paleo-Tethys Ocean. Geology 36:351–354

    Google Scholar 

  • Qiu X-F, Ling W-L, Liu X-M, Lu S-S, Jiang T, Wei Y-X, Peng L-H, Tan J-J (2018) Evolution of the Archean continental crust in the nucleus of the Yangtze block: evidence from geochemistry of 3.0 Ga TTG gneisses in the Kongling high-grade metamorphic terrane. South China J Asian Earth Sci 154:149–161

    Google Scholar 

  • Richards JP (2003) Tectono-magmatic precursors for porphyry Cu-(Mo-Au) deposit formation. Econ Geol Bull Soc Econ Geol 98:1515–1533

    Google Scholar 

  • Richards JR, Kerrich R (2007) Special paper: Adakite-like rocks: their diverse origins and questionable role in metallogenesis. Econ Geol 102:537–576

    Google Scholar 

  • Richards JP (2009) Postsubduction porphyry Cu-Au and epithermal Au deposits: Products of remelting of subduction-modified lithosphere. Geology 37:247–250

    Google Scholar 

  • Richards JP (2011) High Sr/Y magmas and porphyry Cu±Mo±Au deposits: just add water. Econ Geol 106:1075–1081

    Google Scholar 

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Rev 40:1–26

    Google Scholar 

  • Richards JP, Spell T, Rameh E, Razique A, Fletcher T (2012) High Sr/Y magmas reflect arc maturity, high magmatic water content, and porphyry Cu ± Mo ± Au potential: examples from the Tethyan Arcs of Central and Eastern Iran and Western Pakistan. Econ Geol 107:295–332

    Google Scholar 

  • Richards JP (2015) The oxidation state, and sulfur and Cu contents of arc magmas: implications for metallogeny. Lithos 233:27–45

    Google Scholar 

  • Richards JP (2015) Tectonic, magmatic, and metallogenic evolution of the Tethyan orogen: from subduction to collision. Ore Geol Rev 70:323–345

    Google Scholar 

  • Richards JP, Celâl Şengör AM (2017) Did Paleo-Tethyan anoxia kill arc magma fertility for porphyry copper formation? Geology 45:591–594

    Google Scholar 

  • Ridolfi F, Renzulli A, Puerini M (2010) Stability and chemical equilibrium of amphibole in calc-alkaline magmas: an overview, new thermobarometric formulations and application to subduction-related volcanoes. Contrib Mineral Petrol 160:45–66

    Google Scholar 

  • Ringwood AE (1977) Petrogenesis in island arc systems, in Talwani, M., and Pitman, W.C., eds., Island arcs, deep sea trenches, and back arc basins: American Geophysical Union [Maurice Ewing Series II:311–324

  • Rutherford MJ, Devine JD (1988) The May 18, 1980, eruption of Mount St.Helens. 3. Stability and chemistry of amphibole in the magma chamber. J Geophys Res 93:11949–11959

    Google Scholar 

  • Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Mineral Deposita 44:265–283

    Google Scholar 

  • Shen P, Hattori K, Pan H, Jackson S, Seitmuratova E (2015) Oxidation condition and metal fertility of granitic magmas: zircon trace-element data from porphyry Cu deposits in the Central Asian Orogenic Belt. Econ Geol 110:1861–1878

    Google Scholar 

  • Shen Y, Zheng Y-C, Ma R, Zhang A-P, Xu P-Y, Wu C-D, Wang Z-X (2018) Mineralogical characteristics of hornblendes and biotites in ore-forming porphyry from Machangqing Cu-Mo deposit in Yunnan Province and their significance. Miner Deposits 37:797–815 (in Chinese with English abstract)

    Google Scholar 

  • Shen Y, Zheng Y-C, Hou Z-Q, Zhang A-P, Huizenga JM, Wang Z-X, Wang L (2021) Petrology of the Machangqing Complex in southeastern Tibet: implications for the genesis of potassium-rich adakite-like intrusions in collisional zones. J Petrol 62. https://doi.org/10.1093/petrology/egab066

  • Sillitoe RH (2010) Porphyry Copper Systems. Econ Geol 105:3–41

    Google Scholar 

  • Spurlin MS, Yin A, Horton BK, Zhou J, Wang J (2005) Structural evolution of the Yushu-Nangqian region and its relationship to syncollisional igneous activity, east-central Tibet. Geol Soc Ame Bull 117:1293–1317

    Google Scholar 

  • Sun S-S, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc London Spe Publ 42:313–345

    Google Scholar 

  • Sun W-D, Li C-Y, Ling M-X, Ding X, Yang X-Y, Liang H-Y, Zhang H, Fan W-M (2015) The Geochemical Behavior of Molybdenum and Mineralization. Acta Petrol Sin 31:1807–1817

    Google Scholar 

  • Tang M, Erdman M, Eldridge G, Lee C-TA (2018) The redox “filter” beneath magmatic orogens and the formation of continental crust. Sci Adv 4:1–7

    Google Scholar 

  • Tang R-L, Luo H-S (1995) The geology of Yulong porphyry copper (molybdenum) ore belt, Xizang (Tibet). Beijing, Geological Publishing House, 320 p. (in Chinese with English abstract)

  • Tao Y, Bi X-W, Li C-S, Hu R-Z, Li Y-B, Liao M-Y (2014) Geochronology, petrogenesis and tectonic significance of the Jitang granitic pluton in eastern Tibet, SW China. Lithos 184–187:314–323

    Google Scholar 

  • Tattitch BC, Blundy JD (2017) Cu-Mo partitioning between felsic melts and saline-aqueous fluids as a function of XNaCleq, fO2, and fS2. Am Mineral 102:1987–2006

    Google Scholar 

  • Trail D, Watson EB, Tailby ND (2011) The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480:79–82

    Google Scholar 

  • Trail D, Watson EB, Tailby ND (2012) Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas. Geochim Cosmochim Acta 97:70–87

    Google Scholar 

  • Turner S, Hawkesworth C, Liu J-Q, Rogers N, Kelley S, van Calsteren P (1993) Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature 364:50–54

    Google Scholar 

  • Turner S, Arnaud N, Liu J-Q, Rogers N, Hawkesworth C, Harris N, Kelley S, van Calsteren P, Deng W-M (1996) Postcollision, shoshonitic volcanism on the Tibetan Plateau: implications for convective thinning of the lithosphere and the source of ocean island basalts. J Petrol 37:45–71

    Google Scholar 

  • Valley JW, Kinny PD, Schulze DJ, Spicuzza MJ (1998) Zircon megacrysts from kimberlite: oxygen isotope variability among mantle melts. Contrib Mineral Petrol 133:1–11

    Google Scholar 

  • Wainwright AJ, Tosdal RM, Wooden JL, Mazdab FK, Friedman RM (2011) U-Pb (zircon) and geochemical constraints on the age, origin, and evolution of Paleozoic arc magmas in the Oyu Tolgoi porphyry Cu–Au district, southern Mongolia. Gondwana Res 19:764–787

    Google Scholar 

  • Wallace PJ (2005) Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J Volcanol Geotherm Res 140:217–240

    Google Scholar 

  • Wang J, Wang Q, Xu C-B, Dan W, Xiao Z, Shu C, Wei G (2022) Cenozoic delamination of the southwestern Yangtze craton owing to densification during subduction and collision. Geology 50:912–917

  • Wang Q, McDermott F, Xu J-F, Bellon H, Zhu Y-T (2005) Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet: lower-crustal melting in an intracontinental setting. Geology 33:465

    Google Scholar 

  • Wang Q, Wyman DA, Xu J-F, Dong Y-H, Vasconcelos PM, Pearson N, Wan Y-S, Dong H, Li CF, Yu Y-S, Zhu T-X, Feng X-T, Zhang Q-Y, Zi F, Chu Z-Y (2008) Eocene melting of subducting continental crust and early uplifting of central Tibet: evidence from central-western Qiangtang high-K calc-alkaline andesites, dacites and rhyolites. Earth Planet Sci Lett 272:158–171

    Google Scholar 

  • Wang Q, Hawkesworth CJ, Wyman D, Chung S-L, Wu F-Y, Li X-H, Li Z-X, Gou G-N, Zhang X-Z, Tang G-J, Dan W, Ma L, Dong Y-H (2016) Pliocene-Quaternary crustal melting in central and northern Tibet and insights into crustal flow. Nat Commun 7:1–7

    Google Scholar 

  • Wang R, Richards JP, Hou Z-Q, Yang Z-M, Gu Z-B, DuFrane SA (2014) Increasing magmatic oxidation state from Paleocene to Miocene in the Eastern Gangdese Belt, Tibet: Implication for Collision-Related Porphyry Cu-Mo +/- Au Mineralization. Econ Geol 109:1943–1965

    Google Scholar 

  • Wang R, Richards JP, Hou Z-Q, Yang Z-M, DuFrane SA (2014) Increased magmatic water content-the key to oligo-miocene porphyry Cu-Mo +/- Au formation in the Eastern Gangdese Belt. Tibet Econ Geol 109:1315–1339

    Google Scholar 

  • Wang R, Tafti R, Hou Z-Q, Shen Z-C, Guo N, Evans NJ, Jeon H, Li Q-Y, Li W-K (2017) Across-arc geochemical variation in the Jurassic magmatic zone, Southern Tibet: implication for continental arc-related porphyry Cu Au mineralization. Chem Geol 451:116–134

    Google Scholar 

  • Wang R, Weinberg RF, Collins WJ, Richards JP, Zhu D-C (2018) Origin of postcollisional magmas and formation of porphyry Cu deposits in southern Tibet. Earth-Sci Rev 181:122–143

    Google Scholar 

  • Wang X-F, Metcalfe I, Jian P, He L-Q, Wang C-S (2000) The Jinshajiang-Ailaoshan suture zone, China: tectonostratigraphy, age and evolution. J Asian Earth Sci 18:675–690

    Google Scholar 

  • Wang Y-J, Qian X, Cawood PA, Liu H-C, Feng Q-L, Zhao G-C, Zhang Y-H, He H-Y, Zhang PZ (2018) Closure of the East Paleotethyan Ocean and amalgamation of the Eastern Cimmerian and Southeast Asia continental fragments. Earth-Sci Rev 186:195–230

    Google Scholar 

  • Wang D (2013) The characteristics of volatile compositions and their constraints on the metallogenesis of Cenozoic alkali-rich magmas in the Jinshajiang−Red River belt. Ph.D. thesis, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang (in Chinese with English abstract)

  • Weinberg RF, Hasalová P (2015) Water-fluxed melting of the continental crust: a review. Lithos 212–215:158–188

    Google Scholar 

  • Wilkinson JJ (2013) Triggers for the formation of porphyry ore deposits in magmatic arcs. Nat Geosci 6:917–925

    Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemi Geol 20:325–343

    Google Scholar 

  • Wu T, Xiao L, Ma C-Q, Huang W (2013) The geochronological, geochemical and Sr-Nd isotopic characteristics of Tongpu intrusive complex and its implications. Acta Petrol Sin 29:3567–3580 (in Chinese with English abstract)

    Google Scholar 

  • Xia B, Lu Y, Yuan Y-J, Chen W-Y, Zhang X, Xu C, Yu S-R, Wan Z-F (2018) Mixing of enriched lithospheric mantle-derived and crustal magmas: evidence from the Habo cenozoic porphyry in western Yunnan. Acta Geol Sin-English Edition 92:1753–1768

    Google Scholar 

  • Xie F-W, Tang J-X, Chen Y-C, Lang X-H (2018) Apatite and zircon geochemistry of Jurassic porphyries in the Xiongcun district, southern Gangdese porphyry copper belt: Implications for petrogenesis and mineralization. Ore Geol Rev 96:98–114

    Google Scholar 

  • Xin D, Yang T-N, Liang M-J, Xue C-D, Han X, Liao C, Tang J (2018) Syn-subduction crustal shortening produced a magmatic flare-up in middle Sanjiang orogenic belt, southeastern Tibet Plateau: evidence from geochronology, geochemistry, and structural geology. Gondwana Res 62:93–111

    Google Scholar 

  • Xu B, Hou Z-Q, Griffin WL, Lu Y, Belousova E, Xu J-F, O’Reilly SY (2021) Recycled volatiles determine fertility of porphyry deposits in collisional settings. Am Mineral 106:656–661

    Google Scholar 

  • Xu X-W, Cai X-P, Xiao Q-B, Peters S-G (2007) Porphyry Cu-Au and associated polymetallic Fe-Cu-Au deposits in the Beiya Area, western Yunnan Province, south China. Ore Geol Rev 31:224–246

    Google Scholar 

  • Xu L-L, Bi X-W, Hu R-Z, Zhang X-C, Su W-C, Qu W-J, Hu Z-C, Tang Y-Y (2012) Relationships between porphyry Cu–Mo mineralization in the Jinshajiang-Red River metallogenic belt and tectonic activity: constraints from zircon U-Pb and molybdenite Re–Os geochronology. Ore Geol Rev 48:460–473

    Google Scholar 

  • Xu L-L, Bi X-W, Hu R-Z, Tang Y-Y, Jiang G-H, Qi Y-Q (2014) Origin of the ore-forming fluids of the Tongchang porphyry Cu–Mo deposit in the Jinshajiang-Red River alkaline igneous belt, SW China: constraints from He, Ar and S isotopes. J Asian Earth Sci 79:884–894

    Google Scholar 

  • Xu L-L, Bi X-W, Hu R-Z, Tang Y-Y, Wang X-S, Xu Y (2015) LA-ICP-MS mineral chemistry of titanite and the geological implications for exploration of porphyry Cu deposits in the Jinshajiang-Red River alkaline igneous belt, SW China. Miner Petrol 109:181–200

    Google Scholar 

  • Xu L-L, Bi X-W, Hu R-Z, Qi Y-Q, Tang Y-Y, Wang X-S, Zhu J-J (2016a) Redox states and genesis of magmas associated with intra-continental porphyry Cu-Au mineralization within the Jinshajiang-Red River alkaline igneous belt, SW China. Ore Geol Rev 73:330–345

  • Xu L-L, Bi X-W, Hu R-Z, Tang Y-Y, Wang X-S, Huang M-L, Wang Y-J, Ma R, Liu G (2019) Contrasting whole-rock and mineral compositions of ore-bearing (Tongchang) and ore-barren (Shilicun) granitic plutons in SW China: Implications for petrogenesis and ore genesis. Lithos 336–337:54–66

    Google Scholar 

  • Xu Y, Bi X-W, Hu R-Z, Chen Y-W, Liu H-Q, Xu L-L (2016b) Geochronology and geochemistry of Eocene potassic felsic intrusions in the Nangqian basin, eastern Tibet: Tectonic and metallogenic implications. Lithos 246–247:212–227

  • Xu Y-G, Menzies MA, Thirlwall MF, Xie G-H (2001) Exotic lithosphere mantle beneath the western Yangtze Craton: petrogenetic links to Tibet using highly magnesian ultrapotassic rocks. Geology 29:863–866

    Google Scholar 

  • Xu Y-G, Luo Z-Y, Huang X-L, He B, Xiao L, Xie L-W, Shi Y-R (2008) Zircon U-Pb and Hf isotope constraints on crustal melting associated with the Emeishan mantle plume. Geochim Cosmochim Acta 72:3084–3104

  • Yakovlev PV, Saal A, Clark MK, Hong C, Niemi NA, Mallick S (2019) The geochemistry of Tibetan lavas: spatial and temporal relationships, tectonic links and geodynamic implications. Earth Planet Sci Lett 520:115–126

    Google Scholar 

  • Yan G-C, Wang B-D, Liu H, Li X-B, Zhou F (2018) Delineation of Middle Caboniferous arc volcanic rocks in Jomda area, eastern Tibet and its tectonic implications. Earth Sci 43:2715–2726

    Google Scholar 

  • Yang M, Zhao F, Liu X, Qing H, Chi G, Li X, Duan W, Lai C (2020) Contribution of magma mixing to the formation of porphyry-skarn mineralization in a post-collisional setting: the Machangqing Cu-Mo-(Au) deposit, Sanjiang tectonic belt, SW China. Ore Geol Rev 122:103518

    Google Scholar 

  • Yang T-N, Zhang H-R, Liu Y-X, Wang Z-L, Song Y-C, Yang Z-S, Tian S-H, Xie H-Q, Hou K-J (2011) Permo-Triassic arc magmatism in central Tibet: evidence from zircon U-Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chem Geol 284:270–282

    Google Scholar 

  • Yang Z-M, Hou Z-Q, Xu J-F, Bian X-F, Wang G-R, Yang Z-S, Tian S-H, Liu Y-C, Wang Z-L (2014a) Geology and origin of the post-collisional Narigongma porphyry Cu–Mo deposit, southern Qinghai, Tibet. Gondwana Res 26:536–556

    Google Scholar 

  • Yang T-N, Ding Y, Zhang H-R, Fan J-W, Liang M-J, Wang X-H (2014b) Two-phase subduction and subsequent collision defines the Paleotethyan tectonics of the southeastern Tibetan Plateau: evidence from zircon U-Pb dating, geochemistry, and structural geology of the Sanjiang orogenic belt, southwest China. Geol Soc Am Bull 126:1654–1682

    Google Scholar 

  • Yang Z-M, Lu Y-J, Hou Z-Q, Chang Z-S (2015) High-Mg diorite from Qulong in Southern Tibet: Implications for the Genesis of Adakite-like Intrusions and Associated Porphyry Cu Deposits in Collisional Orogens. J Petrol 56:227–254

    Google Scholar 

  • Yang Z-M, Goldfarb R, Chang Z-S (2016) Generation of postcollisional porphyry copper deposits in southern Tibet triggered by subduction of the Indian continental plate, in Richards, J.P., ed., Tectonics and Metallogeny of the Tethyan Orogenic Belt. SEG Spec Publ 19:279–300

    Google Scholar 

  • Yang Z, Yang L-Q, He W-Y, Gao X, Liu X-D, Bao X-S, Lu Y-G (2017) Control of magmatic oxidation state in intracontinental porphyry mineralization: a case from Cu (Mo–Au) deposits in the Jinshajiang-Red River metallogenic belt, SW China. Ore Geol Rev 90:827–846

    Google Scholar 

  • Yang Z-M, Cooke D (2019) Porphyry Cu deposits in China. Soc Econ Geol Spec Publ 22:133–187

    Google Scholar 

  • Yao J-H, Zhu W-G, Li C-S, Zhong H, Bai Z-J, Ripley EM, Li C (2018) Petrogenesis and ore genesis of the lengshuiqing magmatic sulfide deposit in Southwest China: constraints from chalcophile elements (PGE, Se) and Sr-Nd-Os-S isotopes. Econ Geol 113:675–698

    Google Scholar 

  • Yin A, Harrison TM (2000) Geologic evolution of the Himalayan-Tibetan orogen. Ann Rev Earth Planet Sci 28:211–280

    Google Scholar 

  • Yulong Copper (Tibet Yulong Copper Co. Ltd.) (2009) Exploration report for theYulong porphyry copper deposit in Jiangda county, Tibet. Internal report pp1–397

  • Zajacz Z, Candela A, Piccoli M, Wälle M, Sanchez-Valle C (2012) Gold and copper in volatile saturated mafic to intermediate magmas: solubilities, partitioning, and implications for ore deposit formation. Geochim Cosmochim Acta 91:140–159

    Google Scholar 

  • Zajacz Z, Candela PA, Piccoli PM (2017) The partitioning of Cu, Au and Mo between liquid and vapor at magmatic temperatures and its implications for the genesis of magmatic-hydrothermal ore deposits. Geochim Cosmochim Acta 207:81–101

    Google Scholar 

  • Zhang K-J, Zhang Y-X, Tang X-C, Xia B (2012) Late Mesozoic tectonic evolution and growth of the Tibetan plateau prior to the Indo-Asian collision. Earth-Sci Rev 114:236–249

    Google Scholar 

  • Zhang Y-Q, Xie YW (1997) Nd, Sr isotopic characteristics and chronology of Ailaoshan–Jinshajiang alkali-rich intrusions. Sci China (Ser. D) 27:289–293 (in Chinese)

  • Zheng J-P (1999) Mesozoic-Cenozoic Mantle Replacement and Lithospheric Thinning beneath Eastern China. China University of Geosciences Press, Wuhan, 126 p. (in Chinese with English abstract)

    Google Scholar 

  • Zhao G-C, Wang Y-J, Huang B-C, Dong Y-P, Li S-Z, Zhang G-W, Yu S (2018) Geological reconstructions of the East Asian blocks: from the breakup of Rodinia to the assembly of Pangea. Earth-Sci Rev 186:262–286

    Google Scholar 

  • Zhao J-H, Zhou M-F, Yan D-P, Yang Y-H, Sun M (2008) Zircon Lu–Hf isotopic constraints on Neoproterozoic subduction-related crustal growth along the western margin of the Yangtze Block, South China. Precambrian Res 163:189–209

    Google Scholar 

  • Zhao J-H, Zhou M-F (2013) Neoproterozoic high-Mg basalts formed by melting of ambient mantle in South China. Precambrian Res 233:193–205

    Google Scholar 

  • Zhao J-H, Asimow PD (2014) Neoproterozoic boninite-series rocks in South China: a depleted mantle source modified by sediment derived melt. Chem Geol 388:98–111

    Google Scholar 

  • Zhao J-H, Li Q-W, Liu H, Wang W (2018) Neoproterozoic magmatism in the western and northern margins of the Yangtze Block (South China) controlled by slab subduction and subduction-transform-edge-propagator. Earth-Sci Rev 187:1–18

    Google Scholar 

  • Zhao T, Li J, Liu G, Cawood PA, Zi J-W, Wang K, Feng Q, Hu S, Zeng W, Zhang H (2020) Petrogenesis of Archean TTGs and potassic granites in the southern Yangtze Block: Constraints on the early formation of the Yangtze Block. Precambrian Res 347:105848

    Google Scholar 

  • Zhong H, Campbell IH, Zhu W-G, Allen CM, Hu R-Z, Xie L-W, He D-F (2011) Timing and source constraints on the relationship between mafic and felsic intrusions in the Emeishan large igneous province. Geochim Cosmochim Acta 75:1374–1395

    Google Scholar 

  • Zhou H-Y, Sun X-M, Cook NJ, Lin H, Fu Y, Zhong R-C, Brugger J (2017) Nano- to micron-scale particulate gold hosted by magnetite: a product of gold scavenging by bismuth metls. Econ Geol 112:993–1010

    Google Scholar 

  • Zhou M-F, Yan D-P, Kennedy AK, Li Y-Q, Ding J (2002) SHRIMP U-Pb zircon geochronological and geochemical evidence for Neoproterozoic arc-magmatism along the western margin of the Yangtze Block, South China. Earth Planet Sci Lett 196:51–67

    Google Scholar 

  • Zhou Y, Hou Z-Q, Zheng Y-C, Xu B, Wang R (2017) Granulite xenoliths in Liuhe area: evidence for composition and genetic mechanism of the lower crust from the Neoproterozoic to Cenozoic. Acta Petrol Sin 33:2143–2160

    Google Scholar 

  • Zhou Y (2018) Metal fertilization (Cu, Au) of Juvenile Lower–crust and petrogenesis of adakite–like rock in Beiya–Liuhe area. Ph.D. thesis, China University of Geosciences, Beijing (in Chinese with English abstract)

  • Zhou Y, Xu B, Hou Z-Q, Wang R, Zheng Y-C, He W-Y (2019) Petrogenesis of Cenozoic high–Sr/Y shoshonites and associated mafic microgranular enclaves in an intracontinental setting: Implications for porphyry Cu-Au mineralization in western Yunnan, China. Lithos 324–325:39–54

    Google Scholar 

  • Zhu D-C, Zhao Z-D, Niu Y, Mo X-X, Chung S-L, Hou Z-Q, Wang L-Q, Wu F-Y (2011) The Lhasa Terrane: record of a microcontinent and its histories of drift and growth. Earth Planet Sci Lett 301:241–255

    Google Scholar 

  • Zhu D-C, Zhao Z-D, Niu Y, Dilek Y, Hou Z-Q, Mo X-X (2013) The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Res 23:1429–1454

    Google Scholar 

  • Zhu D-C, Wang Q, Zhao Z-D, Chung S-L, Cawood PA, Niu Y, Liu S-A, Wu F-Y, Mo X-X (2015) Magmatic record of India-Asia collision. Sci Reports 5:14289

    Google Scholar 

  • Zhu D-C, Wang Q, Cawood A, Zhao Z-D, Mo X-X (2017) Raising the Gangdese Mountains in southern Tibet. J Geophys Res-Solid Earth 122:214–223

    Google Scholar 

  • Zhu J-J, Hu R-Z, Richards JP, Bi X-W, Zhong H (2015) Genesis and magmatic-hydrothermal evolution of the Yangla Skarn Cu deposit, Southwest China. Econ Geol 110:631–652

    Google Scholar 

  • Zhu J-J, Richards JP, Rees C, Creaser R, DuFrane SA, Locock A, Petrus JA, Lang J (2018) Elevated magmatic sulfur and chlorine contents in ore-forming magmas at the red chris porphyry Cu-Au deposit, Northern British Columbia, Canada. Econ Geol 113:1047–1075

    Google Scholar 

  • Zhu J-J, Hu R, Bi X-W, Hollings P, Zhong H, Gao J-F, Pan L-C, Huang M-L, Wang D-Z (2022) Porphyry Cu fertility of eastern Paleo-Tethyan arc magmas: evidence from zircon and apatite compositions. Lithos 424–425:106775

    Google Scholar 

  • Zhu X-P, Mo X-X, White NC, Zhang B, Sun M-X, Wang S-X, Zhao S-L, Yang Y (2013) Petrogenesis and metallogenic setting of the Habo porphyry Cu-(Mo-Au) deposit, Yunnan, China. J Asian Earth Sci 66:188–203

    Google Scholar 

  • Zi J-W, Cawood A, Fan W-M, Wang Y-J, Tohver E (2012) Contrasting rift and subduction-related plagiogranites in the Jinshajiang ophiolitic melange, southwest China, and implications for the Paleo-Tethys. Tectonics 31. https://doi.org/10.1029/2011TC002937

  • Zou X-Y, Qin K-Z, Han X-L, Li G-M, Evans NJ, Li Z-Z, Yang W (2019) Insight into zircon REE oxy-barometers: a lattice strain model perspective. Earth Planet Sci Lett 506:87–96

    Google Scholar 

Download references

Acknowledgements

We thank Profs. Chusi Li from Indiana University and Pete Hollings from Lakehead University for revising the early version of this manuscript. Ph.D candidate Gong Liu is thanked for his assistance in compilation of geological maps and experimental work. We greatly appreciate the constructive comments and English edits from Editor-in-Chief Bernd Lehmann, Fabien Rabayrol and AE Celestine Mercer.

Funding

This research was jointly funded by the Natural Science Foundation of China (91955209), the Team of “One Belt and One Road” of the Chinese Academy of Sciences, the Natural Science Foundation of China (42073047 and 41873052), the project under the Frontier Programme of the State Key Laboratory of Ore Deposit Geochemistry, and the 100 Innovative Talents of Guizhou province and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jing-Jing Zhu or Xian-Wu Bi.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Editorial handling: C. Mercer

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

126_2022_1143_MOESM2_ESM.jpg

Supplementary file2 (JPG 6375 KB) Fig. A1. Schematic models illustrating the tectonic evolution of the southern and northern parts of the Sanjiang region from the Neoproterozoic to Cenozoic (modified from Zhao and Zhou 2007; Deng et al. 2014a, 2014b; Zhao et al. 2018b). The red dashed boxes show the particular events associated with the formation of the Eocence–Oligocene fertile porphyries in the Jinshajiang–Ailaoshan porphyry Cu-Au-Mo belt in the Sanjiang region

126_2022_1143_MOESM3_ESM.jpg

Supplementary file3 (JPG 1634 KB) Fig. A2. (A) Simplified geological map and (B) cross section of the Machangqing porphyry Cu-Mo deposit (modified from Lu et al. 2013a; Xu et al. 2015, 2016a)

126_2022_1143_MOESM4_ESM.jpg

Supplementary file4 (JPG 4061 KB) Fig. A3. Photomicrographs showing the texture, mineral compositions and alteration of the porphyries. Texture and mineral compositions of the least-altered porphyries from the Machangqing (A), Tongchang (D) and Beiya (G) deposits. K-silicate alteration of the porphyries from the Machangqing (B) and Tongchang (E) deposits. Sericite alteration of the porphyries from the Machangqing (C), Tongchang (F) and Beiya (I) deposits. (H) Formation of sericite + chlorite by alteration of amphibole in the porphyries from the Beiya deposit. Abbreviations: Amp = amphibole, Bt = biotite, Chl = chlorite, Kfs = K-feldspar, Pl = plagioclase, Qtz = quartz, Ser = sericite, Ttn = titanite

126_2022_1143_MOESM5_ESM.jpg

Supplementary file5 (JPG 1977 KB) Fig. A4. (A) Simplified geological map of the Tongchang porphyry Cu-Mo deposit, and (B-C) representative cross section through the Tongchang deposit showing the spatial relationship among wall-rocks, pluton, skarn zone and orebodies (modified from Xu et al. 2016a, 2019 and Yang et al. 2017)

126_2022_1143_MOESM6_ESM.jpg

Supplementary file6 (JPG 2403 KB) Fig. A5. (A) Simplified geologic map of the Beiya porphyry-skarn Au deposit, and (B) representative cross section of the Beiya deposit showing the spatial relationship among the intrusion, wall-rock, skarn, and orebodies (modified from He et al. 2011, 2015)

126_2022_1143_MOESM7_ESM.jpg

Supplementary file7 (JPG 1310 KB) Fig. A6. (A) Simplified geological map, and (B) cross section of the Yulong porphyry Cu-Mo deposit (modified from Hou et al. 2003)

126_2022_1143_MOESM8_ESM.jpg

Supplementary file8 (JPG 13258 KB) Fig. A7. Zircon U‒Pb Tera-Wasserburg concordia diagrams for the fertile porphyries from Machang (A‒C), Tongchang (D‒E) and Beiya (F) deposits. Uncertainty ellipses are shown at 2σ. The discordant analyses (yellow ellipses) are not used for calculation of intercept ages

126_2022_1143_MOESM9_ESM.jpg

Supplementary file9 (JPG 1691 KB) Fig. A8. Cathodoluminescence (CL) images of representative zircon grains from poprphyries of the Machangqing (A‒C), Tongchang (D‒E) and Beiya (F) deposits

126_2022_1143_MOESM10_ESM.jpg

Supplementary file10 (JPG 1513 KB) Fig. A9. Chondrite-normalized zircon REE patterns for the poprphyries of the Machangqing (A‒C), Tongchang (D‒E) and Beiya (F) deposits

Supplementary file11 (XLSX 1021 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, LL., Zhu, JJ., Huang, ML. et al. Genesis of hydrous-oxidized parental magmas for porphyry Cu (Mo, Au) deposits in a postcollisional setting: examples from the Sanjiang region, SW China. Miner Deposita 58, 161–196 (2023). https://doi.org/10.1007/s00126-022-01143-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-022-01143-x

Keywords

Navigation