Skip to main content

Advertisement

Log in

Integration of multiple sulfur isotopes with structural analysis unveils the evolution of ore fluids and source of sulfur at the Kanowna Belle Archean orogenic gold deposit, Yilgarn Craton, Western Australia

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Kanowna Belle deposit is a world-class Archean orogenic gold system that witnessed multiple fluid episodes over a protracted deformation history. The hydrothermal fluid circulation episodes at the Kanowna Belle deposit initiated with the precipitation of early gold-bearing carbonate-famatinite-pyrite-telluride-electrum veins (V1a). These early veins were subsequently folded during a NE-SW shortening event (D1bKB) that led to the development of sericite-chlorite-pyrite stringers (V1b) and foliation (S1KB) dated at c. 2658 ± 9 Ma (U-Pb, xenotime). D1bKB structures are overprinted by quartz-carbonate-sericite-pyrite-gold veins (V2) controlled by the reverse faulting formed as a result of N-S shortening during D2KB. A subsequent deformation event (D3aKB) is related to sinistral shearing produced under ENE-WSW shortening and associated with the development of the Troy lodes and deposition of quartz-pyrite-sericite-gold veins (V3a) dated at c. 2628 ± 9 Ma (U-Pb, xenotime). The application of multiple sulfur isotope analyses of sulfides related to the different mineralization events resolves the hydrothermal fluid isotopic evolution through time. Despite the ore mineralogy differences of the V1, V2, and V3 vein sets, their associated sulfides yield small positive ∆33S (+ 0.1 to + 0.4‰; n = 231) values with two outliers (∆33S = + 0.5‰ and + 0.6‰) across all lithology types. The constant value of MIF-S through the three temporally different gold mineralization episodes implies that sulfur was derived from a single homogenized source of sulfur distal from the deposition site, irrespective of the Au endowment. The consistent small positive ∆33S sulfur isotope signature may support that the Archean orogenic gold system sourced sulfur and possibly hydrothermal fluids from a mantle/magmatic dominated source that homogenized with crustal sulfur at depth prior to gold deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aaltonen A (1997) The significance of vein and breccia paragenesis to mineralisation at the Kanowna Belle Gold Mine, Eastern Goldfields province, Western Australia. University of Western Australia (Unpublished)

  • Agangi A, Hofmann A, Eickmann B, Marin-Carbonne J, Reddy SM (2016) An atmospheric source of S in Mesoarchaean structurally-controlled gold mineralisation of the Barberton Greenstone Belt. Precambrian Res 285:10–20. https://doi.org/10.1016/j.precamres.2016.09.004

    Article  Google Scholar 

  • Alt JC, Shanks WC III, Jackson MC (1993) Cycling of sulfur in subduction zones The geochemistry of sulfur in Mariana Island Arc and back-arc trough. Earth Planet Sci Lett 119:477–494

    Article  Google Scholar 

  • Benning LG, Seward TM (1996) Hydrosulphide complexing of Au(I) in hydrothermal solutions from 150-400°C and 500-1500 bar. Geochim Cosmochim Acta 60:1849–1871. https://doi.org/10.1016/0016-7037(96)00061-0

    Article  Google Scholar 

  • Blewett RS, Czarnota K, Henson PA (2010) Structural-event framework for the eastern Yilgarn Craton, Western Australia, and its implications for orogenic gold. Precambrian Res 183:203–229. https://doi.org/10.1016/j.precamres.2010.04.004

    Article  Google Scholar 

  • Bull A, Rogers JR, Ross A, Tripp G (2017) Kanowna Belle gold deposit. In: Phillips GN (ed) Australian ore deposits. The Australasian Institute of Mining and Metallurgy, Melbourne, pp 229–234

    Google Scholar 

  • Cabral RA, Jackson MG, Rose-Koga EF, Koga KT, Whitehouse MJ, Antonelli MA, Farquhar J, Day JMD, Hauri EH (2013) Anomalous sulphur isotopes in plume lavas reveal deep mantle storage of Archaean crust. Nature 496:490–493. https://doi.org/10.1038/nature12020

    Article  Google Scholar 

  • Caruso S, Fiorentini ML, Moroni M, Martin LAJ (2017) Evidence of magmatic degassing in Archean komatiites: insights from the Wannaway nickel-sulfide deposit, Western Australia. Earth Planet Sci Lett 479:252–262. https://doi.org/10.1016/j.epsl.2017.09.035

    Article  Google Scholar 

  • Cassidy KF, Champion DC, McNaughton NJ, Fletcher IR, Whitaker AJ, Bastrakova IV, Budd AR (2002) Characterisation and metallogenic significance of Archaean granitoids of the Yilgarn Craton. Minerals and Energy Research Institute of Western Australia (MERIWA), Western Australia

  • Cassidy KF et al. (2006) A revised geological framework for the Yilgarn Craton Western Australia vol Record 2006/8. Perth

  • Chang Z, Large RR, Maslennikov V (2008) Sulfur isotopes in sediment-hosted orogenic gold deposits: evidence for an early timing and a seawater sulfur source. Geology 36. https://doi.org/10.1130/g25001a.1

  • Czarnota K, Champion DC, Goscombe B, Blewett RS, Cassidy KF, Henson PA, Groenewald PB (2010) Geodynamics of the eastern Yilgarn Craton. Precambrian Res 183:175–202. https://doi.org/10.1016/j.precamres.2010.08.004

    Article  Google Scholar 

  • Davis BK (1998) Report on structural geological study of the Kanowna Belle deposit. Delta Gold NL,

  • Davis BK, Blewett RS, Squire R, Champion DC, Henson PA (2010) Granite-cored domes and gold mineralisation: architectural and geodynamic controls around the Archaean Scotia-Kanowna Dome, Kalgoorlie Terrane, Western Australia. Precambrian Res 183:316–337. https://doi.org/10.1016/j.precamres.2010.01.011

    Article  Google Scholar 

  • Department of Mines, Industry Regulation and Safety (2016) 1:500000 Interpreted bedrock geology, Government of Western Australia. https://catalogue.data.wa.gov.au/dataset/1-500-000-state-interpreted-bedrock-geology-dmirs-016. Accessed 21 June 2018

  • Department of Mines, Industry Regulation and Safety (2018) Mines and mineral deposits, Government of Western Australia. https://dasc.dmp.wa.gov.au/dasc/. Accessed 27 June 2018

  • Department of Mines, Industry Regulation and Safety (2019) 2018-19 Major commodities resource file, Government of Western Australia. http://dmp.wa.gov.au/About-Us-Careers/Latest-Statistics-Release-4081.aspx. Accessed 12 November 2019

  • Doublier MP, Thébaud N, Wingate MTD, Romano SS, Kirkland CL, Gessner K, Mole DR, Evans N (2014) Structure and timing of Neoarchean gold mineralization in the Southern Cross district (Yilgarn Craton, Western Australia) suggest leading role of late low-Ca I-type granite intrusions. J Struct Geol 67:205–221. https://doi.org/10.1016/j.jsg.2014.02.009

    Article  Google Scholar 

  • Endo Y, Ueno Y, Aoyama S, Danielache SO (2016) Sulfur isotope fractionation by broadband UV radiation to optically thin SO 2 under reducing atmosphere. Earth Planet Sci Lett 453:9–22. https://doi.org/10.1016/j.epsl.2016.07.057

    Article  Google Scholar 

  • Farquhar J, Bao H, Thiemens M (2000) Atmospheric influence of Earth’s earliest sulfur cycle. Science 289:756–758

    Article  Google Scholar 

  • Farquhar J, Wing BA (2003) Multiple sulfur isotopes and the evolution of the atmosphere. Earth Planet Sci Lett 213:1–13. https://doi.org/10.1016/s0012-821x(03)00296-6

    Article  Google Scholar 

  • Fiorentini M, Beresford S, Barley M, Duuring P, Bekker A, Rosengren N, Cas R, Hronsky J (2012) District to camp controls on the genesis of komatiite-hosted nickel sulfide deposits, Agnew-Wiluna Greenstone Belt, Western Australia: insights from the multiple sulfur isotopes. Econ Geol 107:781–796

    Article  Google Scholar 

  • Gauthier L (2007) Kalgoorlie porphyries. KCGM (Unpublished)

  • Godefroy-Rodríguez M, Hagemann S, LaFlamme C, Fiorentini M (2018) The multiple sulfur isotope architecture of the Golden Mile and Mount Charlotte deposits, Western Australia. Mineralium Deposita. https://doi.org/10.1007/s00126-018-0828-y, 55, 797, 822

  • Goldfarb RJ, Groves DI (2015) Orogenic gold: common or evolving fluid and metal sources through time. Lithos 233:2–26. https://doi.org/10.1016/j.lithos.2015.07.011

    Article  Google Scholar 

  • Groves DI, Santosh M, Deng J, Wang Q, Yang L, Zhang L (2019) A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineral Deposita 55:275–292. https://doi.org/10.1007/s00126-019-00877-5

    Article  Google Scholar 

  • Hagemann SG, Gebre-Mariam M, Groves DI (1994) Surface-water influx in shallow-level Archean lode-gold deposits in Western Australia. Geology 22:1067–1070. https://doi.org/10.1130/0091-7613(1994)022<1067:SWIISL>2.3.CO;2

    Article  Google Scholar 

  • Hayman PC, Thébaud N, Pawley MJ, Barnes SJ, Cas RAF, Amelin Y, Sapkota J, Squire RJ, Campbell IH, Pegg I (2015) Evolution of a ∼2.7 Ga large igneous province: a volcanological, geochemical and geochronological study of the Agnew Greenstone Belt, and new regional correlations for the Kalgoorlie Terrane (Yilgarn Craton, Western Australia). Precambrian Res 270:334–368. https://doi.org/10.1016/j.precamres.2015.09.016

    Article  Google Scholar 

  • Hodkiewicz PF, Groves DI, Davidson GJ, Weinberg RF, Hagemann SG (2008) Influence of structural setting on sulphur isotopes in Archean orogenic gold deposits, Eastern Goldfields Province, Yilgarn, Western Australia. Mineral Deposita 44:129–150. https://doi.org/10.1007/s00126-008-0211-5

    Article  Google Scholar 

  • LaFlamme C, Martin L, Jeon H, Reddy SM, Selvaraja V, Caruso S, Bui TH, Roberts MP, Voute F, Hagemann S, Wacey D, Littman S, Wing B, Fiorentini M, Kilburn MR (2016) In situ multiple sulfur isotope analysis by SIMS of pyrite, chalcopyrite, pyrrhotite, and pentlandite to refine magmatic ore genetic models. Chem Geol 444:1–15. https://doi.org/10.1016/j.chemgeo.2016.09.032

    Article  Google Scholar 

  • LaFlamme C, Sugiono D, Thébaud N, Caruso S, Fiorentini M, Selvaraja V, Jeon H, Voute F, Martin L (2018a) Multiple sulfur isotopes monitor fluid evolution of an Archean orogenic gold deposit. Geochim Cosmochim Acta 222:436–446. https://doi.org/10.1016/j.gca.2017.11.003

    Article  Google Scholar 

  • LaFlamme C, Jamieson JW, Fiorentini ML, Thébaud N, Caruso S, Selvaraja V (2018b) Investigating sulfur pathways through the lithosphere by tracing mass independent fractionation of sulfur to the Lady Bountiful orogenic gold deposit, Yilgarn Craton. Gondwana Res 58:27–38. https://doi.org/10.1016/j.gr.2018.02.005

    Article  Google Scholar 

  • LaFlamme C, Fiorentini ML, Lindsay MD, Bui TH (2018c) Atmospheric sulfur is recycled to the crystalline continental crust during supercontinent formation. Nat Commun 9:4380. https://doi.org/10.1038/s41467-018-06691-3

    Article  Google Scholar 

  • Large RR, Bull SW, Maslennikov VV (2011) A carbonaceous sedimentary source-rock model for Carlin-type and orogenic gold deposits. Econ Geol 106:331–358. https://doi.org/10.2113/econgeo.106.3.331

    Article  Google Scholar 

  • Liu W, Etschmann B, Testemale D, Hazemann J-L, Rempel K, Müller H, Brugger J (2014) Gold transport in hydrothermal fluids: competition among the Cl−, Br−, HS− and NH3(aq) ligands. Chem Geol 376:11–19. https://doi.org/10.1016/j.chemgeo.2014.03.012

    Article  Google Scholar 

  • Ludwig KR (2012) User’s manual for Isoplot 3.75: a geochronological toolkit for Microsoft Excel. In: Berkeley Geochronology Center Special Publication No. 5. Berkeley Geochronological Center, California, p 75

  • Lyons JR (2007) Mass-independent fractionation of sulfur isotopes by isotope-selective photodissociation of SO2. Geophys Res Lett 34. https://doi.org/10.1029/2007gl031031

  • Masurel Q, Thébaud N, Allibone A, André-Mayer AS, Hein KAA, Reisberg L, Bruguier O, Eglinger A, Miller J (2019) Intrusion-related affinity and orogenic gold overprint at the Paleoproterozoic Bonikro Au–(Mo) deposit (Côte d’Ivoire, West African Craton). Mineral Deposita. https://doi.org/10.1007/s00126-019-00888-2

  • McFarlane CRM, Luo Y (2012) U-Pb geochronology using 193 nm Excimer LA-ICP-MS optimized for in situ accessory mineral dating in thin sections. Geosci Can 39:158–172

    Google Scholar 

  • Mueller AG, Hagemann SG, McNaughton NJ (2016) Neoarchean orogenic, magmatic and hydrothermal events in the Kalgoorlie-Kambalda area, Western Australia: constraints on gold mineralization in the Boulder Lefroy-Golden Mile fault system. Mineralium Deposita. https://doi.org/10.1007/s00126-016-0665-9, 55, 633, 663

  • Nelson DR (1995) Compilation of SHRIMP U-Pb Zircon Geochronology Data-1994. Geological Survey of Western Australia

  • Neumayr P, Walshe J, Hagemann S (2005) Camp- to deposit-scale alteration footprints in the Kalgoorlie-Kambalda area. pmd*CRC (Unpublished)

  • Palin JM, Xu Y (2000) Gilt by association? Origins of pyritic gold ores in the Victory Mesothermal Gold Deposit, Western Australia. Economic Geology 95:1627–1634. :https://doi.org/10.2113/gsecongeo.95.8.1627

  • Pawley MJ, Wingate MTD, Kirkland CL, Wyche S, Hall CE, Romano SS, Doublier MP (2012) Adding pieces to the puzzle: episodic crustal growth and a new terrane in the northeast Yilgarn Craton, Western Australia. Aust J Earth Sci 59:603–623. https://doi.org/10.1080/08120099.2012.696555

    Article  Google Scholar 

  • Penniston-Dorland SC, Mathez EA, Wing BA, Farquhar J, Kinnaird JA (2012) Multiple sulfur isotope evidence for surface-derived sulfur in the Bushveld Complex Earth and Planetary Science Letters 337-338:236–242. https://doi.org/10.1016/j.epsl.2012.05.013

  • Peterson EC, Mavrogenes JA (2014) Linking high-grade gold mineralization to earthquake-induced fault-valve processes in the Porgera gold deposit, Papua New Guinea. Geology 42:383–386. https://doi.org/10.1130/g35286.1

    Article  Google Scholar 

  • Phillips GN, Powell R (2010) Formation of gold deposits: a metamorphic devolatilization model. J Metamorph Geol 28:689–718. https://doi.org/10.1111/j.1525-1314.2010.00887.x

    Article  Google Scholar 

  • Pitcairn IK, Craw D, Teagle DAH (2015) Metabasalts as sources of metals in orogenic gold deposits. Mineral Deposita 50:373–390

    Article  Google Scholar 

  • Pokrovski GS, Dubessy J (2015) Stability and abundance of the trisulfur radical ion S3- in hydrothermal fluids. Earth Planet Sci Lett 411:298–309. https://doi.org/10.1016/j.epsl.2014.11.035

    Article  Google Scholar 

  • Powell R, Will TM, Phillips GN (1991) Metamorphism in Archaean greenstone belts: calculated fluid compositions and implications for gold mineralisation. J Metamorph Geol 9:141–151. https://doi.org/10.1111/j.1525-1314.1991.tb00510.x

    Article  Google Scholar 

  • Rock NMS, Groves DI (1988) Do lamprophyres carry gold as well as diamonds? Nature 332:253–255

    Article  Google Scholar 

  • Ross AA (2002) Genesis of the Kanowna Belle gold deposit, Kalgoorlie, Western Australia: implications for Archaean metallogeny in the Yilgarn Craton. University of Western Australia (Unpublished)

  • Ross AA, Barley ME, Brown SJA, McNaughton NJ, Ridley JR, Fletcher IR (2004) Young porphyries, old zircons: new constraints on the timing of deformation and gold mineralisation in the Eastern Goldfields from SHRIMP U–Pb zircon dating at the Kanowna Belle Gold Mine, Western Australia. Precambrian Res 128:105–142. https://doi.org/10.1016/j.precamres.2003.08.013

    Article  Google Scholar 

  • Selvaraja V, Caruso S, Fiorentini ML, LaFlamme C (n.d.) The Global Sedimentary Sulfur Isotope Database. http://www.cet.edu.au/research-projects/special-projects/gssid-global-sedimentary-sulfur-isotope-database. Accessed 2019/06/14/

  • Selvaraja V, Fiorentini ML, LaFlamme CK, Wing BA, Bui T-H (2017a) Anomalous sulfur isotopes trace volatile pathways in magmatic arcs. Geology 45:419–422. https://doi.org/10.1130/g38853.1

    Article  Google Scholar 

  • Selvaraja V, Fiorentini ML, Jeon H, Savard DD, LaFlamme CK, Guagliardo P, Caruso S, Bui TH (2017b) Evidence of local sourcing of sulfur and gold in an Archaean sediment-hosted gold deposit. Ore Geol Rev 89:909–930. https://doi.org/10.1016/j.oregeorev.2017.07.021

    Article  Google Scholar 

  • Seward TM (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochim Cosmochim Acta 87:379–399. https://doi.org/10.1016/0016-7037(73)90207-X

    Article  Google Scholar 

  • Sircombe KN, Cassidy KF, Champion DC, Tripp GI, Rogers J (2007) Compilation of SHRIMP U-Pb geochronological data, Yilgarn Craton, Western Australia, 2004-2006. Geoscience Australia,

  • Smit KV, Shirley SB, Hauri EH, Stern RA (2019) Sulfur isotopes in diamonds reveal differences in continent construction. Science 364:383–385

    Article  Google Scholar 

  • Squire RJ, Allen CM, Cas RAF, Campbell IH, Blewett RS, Nemchin AA (2010) Two cycles of voluminous pyroclastic volcanism and sedimentation related to episodic granite emplacement during the late Archean: Eastern Yilgarn Craton, Western Australia. Precambrian Res 183:251–274. https://doi.org/10.1016/j.precamres.2010.08.009

    Article  Google Scholar 

  • Steadman JA, Large RR, Meffre S, Olin PH, Danyushevsky LV, Gregory DD, Belousov I, Lounejeva E, Ireland TR, Holden P (2015) Synsedimentary to early diagenetic gold in black shale-hosted pyrite nodule at the Golden Mile Deposit, Kalgoorlie, Western Australia. Econ Geol 110:1157–1191

    Article  Google Scholar 

  • Stern RA, Rayner NM (2003) Age of several xenotime megacrysts by ID-TIMS: potential reference materials for ion microprobe U-Pb geochronology. Geological Survey of Canada,

  • Swager CP (1997) Tectono-stratigraphy of late Archaean greenstone terranes in the southern eastern goldfields, Western Australia. Precambrian Res 83:11–42

    Article  Google Scholar 

  • Thébaud N, Sugiono D, LaFlamme C, Miller J, Fisher L, Voute F, Tessalina S, Sonntag I, Fiorentini M (2018) Protracted and polyphased gold mineralisation in the Agnew District (Yilgarn Craton, Western Australia). Precambrian Res 310:291–304. https://doi.org/10.1016/j.precamres.2018.02.013

    Article  Google Scholar 

  • Tomkins AG (2010) Windows of metamorphic sulfur liberation in the crust: implications for gold deposit genesis. Geochim Cosmochim Acta 74:3246–3259. https://doi.org/10.1016/j.gca.2010.03.003

    Article  Google Scholar 

  • Tripp GI (2013) Stratigraphy and structure in the Neoarchaean of the Kalgoorlie district, Australia: critical controls on greenstone-hosted gold deposits. PhD thesis, James Cook University

  • Tripp GI (2019) Stratigraphy and structure in the Neoarchean of the Kalgoorlie District, Australia: Critical controls on greenstone-hosted gold deposits. Geological Survey of Western Australia, Perth

  • Trofimovs J, Davis BK, Cas RAF (2004) Contemporaneous ultramafic and felsic intrusive and extrusive magmatism in the Archaean Boorara Domain, Eastern Goldfields Superterrane, Western Australia, and its implications. Precambrian Res 131:283–304. https://doi.org/10.1016/j.precamres.2003.12.012

    Article  Google Scholar 

  • Vasconcelos AD, Gonçalves GO, Lana C, Buick IS, Kamo SL, Corfu F, Scholz R, Alkmim A, Queiroga G, Nalini HA Jr (2018) Characterization of xenotime from Datas (Brazil) as a potential reference material for in situ U-Pb geochronology. Geochem Geophys Geosyst 19:2262–2282. https://doi.org/10.1029/2017gc007412

    Article  Google Scholar 

  • Vielreicher N, Groves D, McNaughton N, Fletcher I (2015) The timing of gold mineralization across the eastern Yilgarn craton using U–Pb geochronology of hydrothermal phosphate minerals. Mineral Deposita 50:391–428. https://doi.org/10.1007/s00126-015-0589-9

    Article  Google Scholar 

  • Vielreicher NM, Groves DI, McNaughton NJ (2016) The giant Kalgoorlie Gold Field revisited. Geosci Front 7:359–374. https://doi.org/10.1016/j.gsf.2015.07.006

    Article  Google Scholar 

  • Wang R, Cudahy T, Laukamp C, Walshe JL, Bath A, Mei Y, Young C, Roache TJ, Jenkins A, Roberts M, Barker A, Laird J (2017) White mica as a hyperspectral tool in exploration for the Sunrise Dam and Kanowna Belle Gold Deposits, Western Australia. Econ Geol 112:1153–1176. https://doi.org/10.5382/econgeo.2017.4505

    Article  Google Scholar 

  • Wyman DA, Cassidy KF, Hollings P (2016) Orogenic gold and the mineral systems approach: resolving fact, fiction and fantasy. Ore Geol Rev 78:322–335. https://doi.org/10.1016/j.oregeorev.2016.04.006

    Article  Google Scholar 

  • Xue Y, Campbell I, Ireland TR, Holden P, Armstrong R (2013) No mass-independent sulfur isotope fractionation in auriferous fluids supports a magmatic origin for Archean gold deposits. Geology 41:791–794. https://doi.org/10.1130/g34186.1

    Article  Google Scholar 

Download references

Acknowledgments

The main author would like to acknowledge SIRF funding from UWA to support this PhD project. We also want to acknowledge CMCA-UWA for the access and training in using their facilities. Special thanks are also dedicated for the Kanowna Belle mine site geologists and staff. We are also grateful for the assistance from M. Verrall, B. Boucher, and S. Cote in data gathering. The author benefitted greatly from the discussions and help from G. I. Tripp and S. Caruso. The author would like to acknowledge the critical and helpful reviews by F. Molnar, B. K Davis, Associate Editor Pasi Eilu, and Editor-in-Chief G. Beaudoin. N. Thébaud would like to acknowledge the support of the Hammond and Nisbet trust for its financial support. C. LaFlamme acknowledges support from the Canada Research Chair Program.

Funding

This project is principally sponsored by Northern Star Resources Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Sugiono.

Additional information

Editorial handling: P. Eilu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 480 kb)

ESM 2

(XLSX 258 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiono, D., Thébaud, N., LaFlamme, C. et al. Integration of multiple sulfur isotopes with structural analysis unveils the evolution of ore fluids and source of sulfur at the Kanowna Belle Archean orogenic gold deposit, Yilgarn Craton, Western Australia. Miner Deposita 56, 1471–1490 (2021). https://doi.org/10.1007/s00126-020-01032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-01032-1

Keywords

Navigation