Skip to main content

Advertisement

Log in

Trace element composition and U-Pb ages of cassiterite from the Bolivian tin belt

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Bolivian tin belt is a metallogenic province in the Eastern Cordillera of the Andes known for its Sn, W, Ag, and base metal deposits. Cassiterite, which is a major constituent in many magmatic-hydrothermal ore deposits from the Bolivian tin belt, can incorporate dozens of elements within its crystal lattice, making it a useful geological tracer mineral and also a potential host of critical elements. New U-Pb dating of cassiterite yields Late Triassic (Kellhuani deposit) and Late Oligocene to earliest Miocene (Viloco, Huanuni, and Llallagua deposits) ages. These ages confirm that Sn mineralization in the Bolivian tin belt occurred at least in two separate events during two major magmatic episodes apparently triggered by mantle upwelling, decompression melting, and basalt production promoting high heat flow into the overlying crust. The composition of studied hydrothermal cassiterite yields some geochemical trends that are attributed to its distance to the causative intrusion and/or level of emplacement. For example, cassiterite is generally enriched in Nb and Ta and yields higher Ti/Zr and Ti/Sc ratios in samples from xenothermal ore deposits located adjacent to intrusive complexes relative to shallow xenothermal and epithermal ore deposits. Therefore, these geochemical trends in cassiterite are useful tracers pointing to magmatic-hydrothermal centers. REE distribution in cassiterite was likely influenced by boiling processes, which resulted in tetrad-type irregularities. Cassiterite from the Bolivian tin belt is unattractive as a source for Nb (interquartile range [IQR] 4.84–0.037 ppm), Ta (IQR 0.0924–0.0126 ppm), and Ge (IQR 3.92–0.776 ppm). Some deposits, however, contain cassiterite relatively enriched in In (IQR 96.9–9.78 ppm, up to 1414 ppm) and Ga (IQR 92.1–3.03, up to 7437 ppm), that could constitute an attractive supplementary source for these elements in addition to sulfide minerals in the same deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdalla HM, Matsueda H, Obeid MA, Takahashi R (2008) Chemistry of cassiterite in rare metal granitoids and the associated rocks in the Eastern Desert, Egypt. J Mineral Petrol Sci 103:318–326. https://doi.org/10.2465/jmps.070528a

    Article  Google Scholar 

  • Ahlfeld F (1967) Metallogenetic epochs and provinces of Bolivia. Mineral Deposita 2:291–311. https://doi.org/10.1007/BF00207022

    Article  Google Scholar 

  • Ahlfeld F, Branisa L (1960) Geología de Bolivia. Don Bosco, Texas

  • Ahlfeld F, Schneider-Scherbina A (1964) Los yacimientos minerales y de hidrocarburos de Bolivia. Bolivia Departamento Nac Geol 5:1–388

    Google Scholar 

  • Arce-Burgoa O (2009) Metalliferous ore deposits of Bolivia. SPC Impresores: La Paz

  • Arce-Burgoa O, Goldfarb RJ (2009) Metallogeny of Bolivia. SEG Newsletter 79:1–15

    Google Scholar 

  • Artiaga D, Torres B, Torró L, Tauler E, Melgarejo JC, Arce-Burgoa O (2013) The Viloco Sn-W-Mo-As deposits, Bolivia: geology and mineralogy. Conference: 12th SGA Biennial Meeting “Mineral deposit research for a high-tech world”, 3:1239–1242, Uppsala

  • Baldellón E, Fornari M, Espinoza F, Soler P (1994) Sucesión estructural de la zona Serranía de las Minas. XI Congreso Geológico de Bolivia, Memorias, pp 238–247

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333. https://doi.org/10.1007/s004100050159

    Article  Google Scholar 

  • Betkowski WB, Rakovan J, Harlov DE (2017) Geochemical and textural characterization of phosphate accessory phases in the vein assemblage and metasomatically altered Llallagua tin porphyry. Mineral Petrol 111:547–568. https://doi.org/10.1007/s00710-017-0510-6

    Article  Google Scholar 

  • Buddington AF (1935) High-temperature mineral associations at shallow to moderate depths. Econ Geol 30:205–222. https://doi.org/10.2113/gsecongeo.30.3.205

    Article  Google Scholar 

  • Cacho A, Melgarejo JC, Camprubí A, Torró L, Castillo-Oliver M, Torres B, Artiaga D, Tauler E, Martínez Á, Campeny M, Alfonso P, Arce-Burgoa OR (2019) Mineralogy and distribution of critical elements in the Sn–W–Pb–Ag–Zn Huanuni deposit, Bolivia. Minerals 9:753. https://doi.org/10.3390/min9120753

    Article  Google Scholar 

  • Chace FM (1948a) Tin-silver veins of Oruro, Bolivia, part I. Econ Geol 43:333–383. https://doi.org/10.2113/gsecongeo.43.5.333

    Article  Google Scholar 

  • Chace FM (1948b) Tin-silver veins of Oruro Bolivia; part II. Econ Geol 43:435–470. https://doi.org/10.2113/gsecongeo.43.6.435

    Article  Google Scholar 

  • Cheilletz A, Clark AH, Farrar E, Arroyo Pauca G, MacArthur JD, Pichavant M (1990) Stratigraphy and geochronology of the Macusani ignimbrite field: chronometer of the Mio-Pliocene geodynamic evolution of the Andes of SE Peru. In: Symposium international “Géodynamique andine”: résumés des communications. ORSTOM, Paris, pp 341–344

    Google Scholar 

  • Chen LL, Ni P, Dai BZ, Li WS, Chi Z, Pan JY (2019) The genetic association between quartz vein- and greisen-type mineralization at the Maoping W–Sn deposit, southern Jiangxi, China: insights from zircon and cassiterite U–Pb ages and cassiterite trace element composition. Minerals 9:411. https://doi.org/10.3390/min9070411

    Article  Google Scholar 

  • Cheng Y, Spandler C, Kemp A, Mao J, Rusk B, Hu Y, Blake K (2019) Controls on cassiterite (SnO2) crystallization: evidence from cathodoluminescence, trace-element chemistry, and geochronology at the Gejiu Tin District. Am Mineral 104:118–129. https://doi.org/10.2138/am-2019-6466

    Article  Google Scholar 

  • Clark AH, Farrar E (1973) The Bolivian Tin Province; notes on the available geochronological data. Econ Geol 68:102–106. https://doi.org/10.2113/gsecongeo.68.1.102

    Article  Google Scholar 

  • Clark AH, Farrar E, Caelles JC, Haynes SJ, Lortie RB, McBride SL, Quirt GS, Robertson RCR, Zentilli M (1976) Longitudinal variations in the metallogenetic evolution of the Central Andes: a progress report. Geol S Am S 14:23–58

    Google Scholar 

  • Clark AH, Palma VV, Archibald DA, Farrar E, Robertson RCR (1983) Occurrence and age of tin mineralization in the Cordillera Oriental, southern Peru. Econ Geol 78:514–520. https://doi.org/10.2113/gsecongeo.78.3.514

    Article  Google Scholar 

  • Clark AH, Farrar E, Kontak DJ, Langridge RJ, Arenas FMJ, France LJ, McBride SL, Woodman PL, Wasteneys HA, Sandeman HA, Archibald DA (1990) Geologic and geochronologic constraints on the metallogenic evolution of the Andes of southeastern Peru. Econ Geol 85:1520–1583. https://doi.org/10.2113/gsecongeo.85.7.1520

    Article  Google Scholar 

  • Clark AH, Chen Y, Grant JW, Kontak DJ, Wasteneys HA, Sandeman HA, Farrar E, Archibald DE (2000) Delayed inception of ore deposition in major lithophile-metal vein systems: the San Rafael tin and Pasto Bueno tungsten deposits, Peru. Geol S Am S 32:279

    Google Scholar 

  • Claure H, Olivera L, Heuschmidt B, Arduz M, Troëng B, Ballón R (1996) Mapas temáticos de recursos minerales de Bolivia. Hoja Uncía: Bol Ser Geol Bolivia 7:184

    Google Scholar 

  • Cordani U G (1967) Unpublished letter in library of Servicio Geológico de Bolivia, LaPaz

  • Cordani UG, Iriarte AR, Sato K (2019) Geochronological systematics of the Huayna Potosí, Zongo and Taquesi plutons, Cordillera Real of Bolivia, by the K/Ar, Rb/Sr and U/Pb methods. Braz J Geol 49:1–22. https://doi.org/10.1590/2317-4889201920190016

    Article  Google Scholar 

  • Cunningham CG, Zartman RE, McKee EH, Rye RO, Naeser CW, Sanjinés V, Ericksen GE, Tavera V (1996) The age and thermal history of Cerro Rico de Potosi, Bolivia. Mineral Deposita 31:374–385. https://doi.org/10.1007/BF00189185

    Article  Google Scholar 

  • de Silva SL, Kay MS (2018) Turning up the heat: high-flux magmatism in the Central Andes. Elements 14:245–250. https://doi.org/10.2138/gselements.14.4.245

    Article  Google Scholar 

  • DeCelles PG, Horton BK (2003) Early to middle tertiary foreland basin development and the history of Andean crustal shortening in Bolivia. Geol Soc Am Bull 115:58–77. https://doi.org/10.1130/0016-7606(2003)115%3C0058:ETMTFB%3E2.0.CO;2

    Article  Google Scholar 

  • Demouy S, Paquette J-L, de Saint-Blanquat M, Benoit M, Belousova EA, O'Reilly SY, García F, Tejada LC, Gallegos R, Sempere T (2012) Spatial and temporal evolution of Liassic to Paleocene arc activity in southern Peru unraveled by zircon U-Pb and Hf in-situ data on plutonic rocks. Lithos 155:183–200. https://doi.org/10.1016/j.lithos.2012.09.001

    Article  Google Scholar 

  • Díaz E (1997) Facies y ambientes sedimentarios de la Formación Cancañiri (Silúrico inferior) en La Cumbre de La Paz, norte de la Cordillera Oriental de Bolivia. Geogaceta 22:55–57

    Google Scholar 

  • Dietrich A, Lehmann B, Wallianos A (2000) Bulk rock and melt inclusion geochemistry of Bolivian tin porphyry systems. Econ Geol 95:313–326. https://doi.org/10.2113/gsecongeo.95.2.313

    Article  Google Scholar 

  • European Commission (2017) Critical Raw Materials. https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/critical_en. Accessed 14 Apr 2020

  • Everden JF (1961) Edades absolutas de algunas rocas ígneas en Bolivia por el método potasio-argón. Soc Geol Bol Not 2:3

    Google Scholar 

  • Evernden JF, Kriz SJ, Cherroni CM (1977) Potassium-argon ages of some Bolivian rocks. Econ Geol 72:1042–1061. https://doi.org/10.2113/gsecongeo.72.6.1042

    Article  Google Scholar 

  • Farrar E, Clark AH, Kontak DJ, Archibald DA (1988) Zongo-San Gabán zone: Eocene foreland boundary of the Central Andean orogen, Northwest Bolivia and Southeast Peru. Geology 16:55–58. https://doi.org/10.1130/0091-7613(1988)016%3C0055:ZSGNZE%3E2.3.CO;2

    Article  Google Scholar 

  • Farrar E, Clark AH, Heinrich SM (1990) The age of the Zongo pluton and the tectonothermal evolution of the Zongo-San Gabán Zone in the Cordillera Real, Bolivia. Extended abstracts, 1st International Symposium on Andean Geodynamics, Grenoble, pp 171–174

  • Fontboté L (2018) Ore deposits of the Central Andes. Elements 14:257–261. https://doi.org/10.2138/gselements.14.4.257

    Article  Google Scholar 

  • Fornari M, Baldellón E, Espinoza F, Ibarra I, Jiménez N, Mamani M (2002) Ar-Ar dating of Late Oligocene-Early Miocene volcanism in the Altiplano. Extended abstracts, 4th International Symposium on Andean Geodynamics, Toulouse, pp 223–226

  • Fuchsloch W, Nex P, Kinnaird J (2019) The geochemical evolution of Nb-Ta-Sn oxides from pegmatites of the Cape Cross–Uis pegmatite belt, Namibia. Mineral Mag 83:1–56. https://doi.org/10.1180/mgm.2018.151

    Article  Google Scholar 

  • Gillis RJ, Horton BK, Grove M (2006) Thermochronology, geochronology, and upper crustal structure of the Cordillera Real: implications for Cenozoic exhumation of the central Andean plateau. Tectonics 25:1–22. https://doi.org/10.1029/2005TC001887

    Article  Google Scholar 

  • Gordon SG (1944) The mineralogy of the tin mines of Cerro de Llallagua, Bolivia. Proc Acad Nat Sci Philadelphia 96:279–359

    Google Scholar 

  • Gorelikova NV, Khanchuk AI, Bortnikov NS, Pawlowsky-Glahn V, Tolosana-Delgado R (2004) Classification of tin deposits using trace elements in cassiterites (Far East, Russia). In: Proceedings of the Interim Iagod Conference Vladivostok, Russia. Dal’nauka, pp 590–593

  • Gorelikova NV, Tolosana-Delgado R, Pawlowsky-Glahn V, Khanchuk A, Gonevchuk V (2006) Discriminating geodynamical regimes of tin ore formation using trace element composition of cassiterite: the Sikhote'Alin case (Far Eastern Russia). Geol Soc Lond Spec Publ 264:43–57. https://doi.org/10.1144/GSL.SP.2006.264.01.04

    Article  Google Scholar 

  • Grant JN, Halls C, Salinas WA, Snelling NJ (1979) K-Ar ages of igneous rocks and mineralization in part of the Bolivian tin belt. Econ Geol 74:838–851. https://doi.org/10.2113/gsecongeo.74.4.838

    Article  Google Scholar 

  • Guillong M, Hametner K, Reusser E, Wilson SA, Günther D (2005) Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand Geoanal Res 29:315–331. https://doi.org/10.1111/j.1751-908x.2005.tb00903.x

    Article  Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. In: Sylvester P, (ed) laser ablation ICP-MS in the earth sciences: current practices and outstanding issues. Miner Assoc Can. Short course 40

  • Guillong M, Wotzlaw JF, Looser N, Laurent O (2020) Evaluating the reliability of U–Pb laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) carbonate geochronology: matrix issues and a potential calcite validation reference material. Geochronology 2:155–167. https://doi.org/10.5194/gchron-2-155-2020

    Article  Google Scholar 

  • Guo J, Zhang RQ, Sun WD, Ling MX, Hu YB, Wu K, Zhang LC (2018) Genesis of tin-dominant polymetallic deposits in the Dachang district, South China: insights from cassiterite U-Pb ages and trace element compositions. Ore Geol Rev 95:863–879. https://doi.org/10.1016/j.oregeorev.2018.03.023

    Article  Google Scholar 

  • Gupta CK, Suri AK (1994) Extractive metallurgy of niobium. CRC press inc., Florida

    Google Scholar 

  • Harlaux M, Kouzmanov K, Gialli S, Laurent O, Rielli A, Dini A, Chauvet A, Menzies A, Kalinaj M, Fontboté L (2020) Tourmaline as a tracer of late-magmatic to hydrothermal fluid evolution: the world-class San Rafael tin (-copper) deposit, Peru. Econ Geol, in press 115:1665–1697. https://doi.org/10.5382/econgeo.4762

    Article  Google Scholar 

  • Hellstrom JC, Paton C, Woodhead JD, Hergt JM (2008) Iolite: software for spatially resolved LA-(quad and MC) ICP-MS analysis. In: Sylvester P (ed) laser ablation ICP-MS in the earth sciences: current practices and outstanding issues. Miner Assoc Can 40:343–348

    Google Scholar 

  • Heuschmidt B, La Torre JB, Angels VM, Zapata MC (2002) Las áreas prospectivas de Bolivia para yacimientos metalíferos. Boletín del Servicio Nacional de Geología y Minería, 30, La Paz

  • Horton BK, Hampton BA, Waanders GL (2001) Paleogene synorogenic sedimentation in the Altiplano plateau and implications for initial mountain building in the Central Andes. Geol Soc Am Bull 113:1387–1400. https://doi.org/10.1130/0016-7606(2001)113%3C1387:PSSITA%3E2.0.CO;2

    Article  Google Scholar 

  • Hoskin PWO, Schaltegger U (2003) The composition of zircon and igneous and metamorphic petrogenesis. Rev Mineral Geochem 53:27–62. https://doi.org/10.2113/0530027

    Article  Google Scholar 

  • Hulsbosch N, Muchez P (2019) Tracing fluid saturation during pegmatite differentiation by studying the fluid inclusion evolution and multiphase cassiterite mineralisation of the Gatumba pegmatite dyke system (NW Rwanda). Lithos:354–355, Article 105285. https://doi.org/10.1016/j.lithos.2019.105285

  • Husson L, Sempere T (2003) Thickening the Altiplano crust by gravity-driven crustal channel flow. Geophys Res Lett 30:1243–1246. https://doi.org/10.1029/2002GL016877

    Article  Google Scholar 

  • Imai H, Lee MS, Iida K, Fujiki Y, Takenouchi S (1975) Geologic structure and mineralization of xenothermal vein-type deposits in Japan. Econ Geol 70:647–676. https://doi.org/10.2113/gsecongeo.70.4.647

    Article  Google Scholar 

  • Isacks BL (1988) Uplift of the central Andean plateau and bending of the Bolivian orocline. J Geophys Res 93:3211–3231. https://doi.org/10.1029/JB093iB04p03211

    Article  Google Scholar 

  • Ishihara S (1981) The granitoid series and mineralization. Econ Geol Anniv 75:458–484. https://doi.org/10.5382/AV75.14

    Article  Google Scholar 

  • Ishihara S, Murakami H, Márquez-Zavalia MF (2011) Inferred indium resources of the Bolivian tin-polymetallic deposits. Resour Geol 61:174–191. https://doi.org/10.1111/j.1751-3928.2011.00157.x

    Article  Google Scholar 

  • James DE (1971a) Andean crustal and upper mantle structure. J Geophys Res 76:3246–3271. https://doi.org/10.1029/JB076i014p03246

    Article  Google Scholar 

  • James DE (1971b) Plate tectonic model for the evolution of the Central Andes. Geol Soc Am Bull 82:3325–3346. https://doi.org/10.1130/0016-7606(1971)82[3325:PTMFTE]2.0.CO;2

    Article  Google Scholar 

  • Jiang SY, Yu JM, Lu JJ (2004) Trace and rare-earth element geochemistry in tourmaline and cassiterite from the Yunlong tin deposit, Yunnan, China: implication for migmatitic-hydrothermal fluid evolution and ore genesis. Chem Geol 209:193–213. https://doi.org/10.1016/j.chemgeo.2004.04.021

    Article  Google Scholar 

  • Jiménez-Franco A, Alfonso P, Canet C, Trujillo JE (2018) Mineral chemistry of In-bearing minerals in the Santa Fe mining district, Bolivia. Andean Geol 45:410–432. https://doi.org/10.5027/andgeoV45n3-3052

    Article  Google Scholar 

  • Jochum KP, Wies U, Stoll B, Kuzmin D, Yang Q, Raczek I, Jacob DE, Stracke A, Birbaum K, Frick DA, Günter D, Enzweiler J (2011) Determination of reference values for NIST SRM 610-617 glasses following ISO guidelines. Geostand Geoanal Res 35:397–429. https://doi.org/10.1111/j.1751-908X.2011.00120.x

    Article  Google Scholar 

  • Jolliff BL, Papike JJ, Laul JC (1987) Mineral recorders of pegmatite internal evolution: REE contents of tourmaline from the Bob Ingersoll pegmatite, South Dakota. Geochim Cosmochim Acta 51:2225–2232. https://doi.org/10.1016/0016-7037(87)90272-9

    Article  Google Scholar 

  • Kelly WC, Turneaure FS (1970) Mineralogy, paragenesis and geothermometry of the tin and tungsten deposits of the Eastern Andes, Bolivia. Econ Geol 65:609–680. https://doi.org/10.2113/gsecongeo.65.6.609

    Article  Google Scholar 

  • Kempe U, Lehmann B, Wolf D, Rodionov N, Bombach K, Schwengfelder U, Dietrich A (2008) U–Pb SHRIMP geochronology of Th-poor, hydrothermal monazite: An example from the Llallagua tin-porphyry deposit, Bolivia. Geochim Cosmochim Ac 72:4352–4366. https://doi.org/10.1016/j.gca.2008.05.059

  • Kendall-Langley L, Kemp A, Grigson J, Hammerli J (2019) U-Pb and reconnaissance Lu-Hf isotope analysis of cassiterite and columbite group minerals from Archean Li-Cs-Ta type pegmatites of Western Australia. Lithos 352–353. Article 105231. https://doi.org/10.1016/j.lithos.2019.105231

  • Kessel R, Ulmer P, Pettke T, Schmidt MW, Thompson AB (2005) The water-basalt system at 4 to 6 GPa: phase relations and second critical endpoint in a K-free eclogite at 700 to 1400 °C. Earth Planet Sci Lett 237:873–892. https://doi.org/10.1016/j.epsl.2005.06.018

    Article  Google Scholar 

  • Keutsch F, De Brodtkorb MK (2008) Metalliferous paragenesis of the San José mine, Oruro, Bolivia. J S Am Earth Sci 25:485–491. https://doi.org/10.1016/j.jsames.2007.12.003

    Article  Google Scholar 

  • Koeppen RP, Smith RL, Kunk MJ, Flores AM, Luedke RG, Sutter JF (1987) The Morococala volcanics: highly peraluminous rhyolite ash flow magmatism in the Cordillera Oriental, Bolivia. Geol S Am S 19:731

    Google Scholar 

  • Kohn MJ, Vervoort JD (2008) U-Th-Pb dating of monazite by single collector ICP-MS: pitfalls and potential. Geochem Geophys Geosyst 9:1–16. https://doi.org/10.1029/2007GC001899

    Article  Google Scholar 

  • Kono M, Fukao Y, Yamamoto A (1989) Mountain building in the Central Andes. J Geophys Res 94:3891–3905. https://doi.org/10.1029/JB094iB04p03891

    Article  Google Scholar 

  • Kontak DJ, Clark AH (2002) Genesis of the giant, bonanza San Rafael lode tin deposit, Peru: origin and significance of pervasive alteration. Econ Geol 97:1741–1777. https://doi.org/10.2113/gsecongeo.97.8.1741

    Article  Google Scholar 

  • Kontak DJ, Clark AH, Farrar E, Strong DF (1984) The rift-associated Permo-Triassic magmatism of the Eastern Cordillera: a precursor to the Andean orogeny. In: Pitcher WS, Atherton MP, Cobbing EJ, Beckinsale RD (eds) Magmatism at a plate edge: the Peruvian Andes. Blackie, Glasgow-London

    Google Scholar 

  • Kontak DJ, Clark AH, Pearce TH, Strong DF, Baadsgaard H (1986) Petrogenesis of a Neogene shoshonite suite, Cerro Moromoroni, Puno, southeastern Peru. Can Mineral 24:117–135

    Google Scholar 

  • Kontak DJ, Clark AH, Farrar E, Archibald DA, Baadsgaard H (1987) Geochronological data for tertiary granites of the Southeast Peru segment of the central Andean tin belt. Econ Geol 82:1711–1618. https://doi.org/10.2113/gsecongeo.82.6.1611

    Article  Google Scholar 

  • Kontak DJ, Farrar E, Clark AH, Archibald DA (1990) Eocene tectono-thermal rejuvenation of an upper Paleozoic-lower Mesozoic terrane in the Cordillera de Carabaya, Puno, southeastern Peru, revealed by K-Ar and 40Ar/39Ar dating. J S Am Earth Sci 3:231–246. https://doi.org/10.1016/0895-9811(90)90005-L

    Article  Google Scholar 

  • Lamb S, Hoke L (1997) Origin of the high plateau in the Central Andes, Bolivia, South America. Tectonics 16:623–649. https://doi.org/10.1029/97TC00495

    Article  Google Scholar 

  • Lancelot JR, Laubacher G, Marocco R, Renaud U (1978) U/Pb radiochronology of two granitic plutons from the Eastern Cordillera (Peru): extent of Permian magmatic activity and consequence. Geol Rundsch 67:286–248. https://doi.org/10.1007/BF01803263

    Article  Google Scholar 

  • Legros H, Harlaux M, Mercadier J, Romer RL, Poujol M, Camacho A, Marignac C, Cuney M, Wang RC, Charles N, Lespinasse MY (2020) The world-class Nanling metallogenic belt (Jiangxi, China): W and Sn deposition at 160 Ma followed by 30 m.y. of hydrothermal metal redistribution. Ore Geol Rev 117. Article 103302. https://doi.org/10.1016/j.oregeorev.2019.103302

  • Lehmann B (1985) Formation of the strata-bound Kellhuani tin deposits, Bolivia. Mineral Deposita 20:169–176. https://doi.org/10.1007/BF00204561

    Article  Google Scholar 

  • Lehmann B, Ishihara S, Michel H, Miller J, Rapela C, Sanchez A, Tistl M, Winkelmann L (1990) The Bolivian tin province and regional tin distribution in the Central Andes: a reassessment. Econ Geol 85:1044–1058. https://doi.org/10.2113/gsecongeo.85.5.1044

    Article  Google Scholar 

  • Lehmann B, Dietrich A, Heinhorst J, Métrich N, Mosbah M, Palacios C, Schneider HJ, Wallianos A, Webster J, Winkelmann L (2000) Boron in the Bolivian tin belt. Mineral Deposita 35:223–232. https://doi.org/10.1007/s001260050017

    Article  Google Scholar 

  • Lehmann B, Zoheir B, Neymark L, Zeh A, Emam A, Radwan A, Zhang R, Moscati R (2020) Monazite and cassiterite U-Pb dating of the Abu Dabbab rare-metal granite, Egypt: Late Cryogenian metalliferous granite magmatism in the Arabian-Nubian Shield. Gondwana Res 84:71–80. https://doi.org/10.1016/j.gr.2020.03.001

    Article  Google Scholar 

  • Lentz D, McAllister A (1990) The petrogenesis of tin- and sulfide-lode mineralization at True Hill, southwestern New Brunswick. Atl Geol 26:136–155. https://doi.org/10.4138/1698

    Article  Google Scholar 

  • Lerouge C, Gloaguen E, Wille G, Bailly L (2017) Distribution of In and other rare metals in cassiterite and associated minerals in Sn±W ore deposits of the western Variscan Belt. Eur J Mineral 29:739–753. https://doi.org/10.1127/ejm/2017/0029-2673

    Article  Google Scholar 

  • Luvizotto GL, Zack T, Meyer HP, Ludwig T, Triebold S, Kronz A, Münker C, Stockli DF, Prowatke S, Klemme S, Jacob DE, von Eynatten H (2009) Rutile crystals as potential trace element and isotope mineral standards for microanalysis. Chem Geol 261:346–369. https://doi.org/10.1016/j.chemgeo.2008.04.012

  • Maffione M, Speranza F, Faccenna C (2009) Bending and growth of the Central Andean plateau: Paleomagnetic and structural constraints from the Eastern Cordillera (22-24°S, NW Argentina). Tectonics 28. https://doi.org/10.1029/2008TC002402

  • Mamani M, Wörner G, Sempere T (2010) Geochemical variations in igneous rocks of the Central Andean orocline (13°S to 18°S): Tracing crustal thickening and magma generation through time and space. GSA Bull 122:162–182. https://doi.org/10.1130/B26538.1

  • Mao W, Zhong H, Yang J, Tang Y, Liu L, Fu Y, Zhang X, Sein K, Soe MA, Li J, Le Z (2020) Combined zircon, molybdenite, and cassiterite geochronology and cassiterite geochemistry of the Kuntabin tin-tungsten deposit in Myanmar. Econ Geol 115:603–625. https://doi.org/10.5382/econgeo.4713

    Article  Google Scholar 

  • Martinez C, Vargas E (1990) Sobre las deformaciones sinsedimentarias mesozoicas de la región de Macha-Pocoata-Colquechaca (Norte de Potosí – Cordillera Oriental de Bolivia). YPFB 11:13–20

    Google Scholar 

  • McBride SL, Robertson RCR, Clark AH, Farrar E (1983) Magmatic and metallogenetic episodes in the northern tin belt, Cordillera Real, Bolivia. Geol Rundsch 72:685–671. https://doi.org/10.1007/BF01822089

    Article  Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42. https://doi.org/10.1016/j.chemgeo.2016.06.005

    Article  Google Scholar 

  • Mišković A, Spikings RA, Chew DM, Kosler J, Ulianov A, Schaltegger U (2009) Tectonomagmatic evolution of Western Amazonia: geochemical characterization and zircon U-Pb geochronologic constraints from the Peruvian Eastern Cordilleran granitoids. Geol Soc Am Bull 121:1298–1324. https://doi.org/10.1130/B26488.1

    Article  Google Scholar 

  • Mlynarczyk MSJ, Williams-Jones AE (2005) The role of collisional tectonics in the metallogeny of the Central Andean tin belt. Earth Planet Sc Lett 240:656–667. https://doi.org/10.1016/j.epsl.2005.09.047

    Article  Google Scholar 

  • Möller P, Dulski P, Szacki W, Malow G, Riedel E (1988) Substitution of tin in cassiterite by tantalum, niobium, tungsten, iron and manganese. Geochim Cosmochim Acta 52:1497–1503. https://doi.org/10.1016/0016-7037(88)90220-7

    Article  Google Scholar 

  • Monecke T, Kempe U, Trinkler M, Thomas R, Dulski P, Wagner T (2011) Unusual rare earth element fractionation in a tin-bearing magmatic-hydrothermal system. Geology 39:295–298. https://doi.org/10.1130/G31659.1

    Article  Google Scholar 

  • Moore F, Howie RA (1979) Geochemistry of some Cornubian cassiterites. Mineral Deposita 14:103–107. https://doi.org/10.1007/BF00201869

    Article  Google Scholar 

  • Morgan GB, London D, Luedke RG (1998) Petrochemistry of Late Miocene peraluminous silicic volcanic rocks from the Morococala field, Bolivia. J Petrol 39:601–632. https://doi.org/10.1093/petroj/39.4.601

    Article  Google Scholar 

  • Moscati R, Neymark L (2019) U–Pb geochronology of tin deposits associated with the Cornubian Batholith of southwest England: direct dating of cassiterite by in situ LA-ICPMS. Mineral Deposita 55:1–20. https://doi.org/10.1007/s00126-019-00870-y

    Article  Google Scholar 

  • Müller B, Frischknecht R, Seward T, Heinrich C, Camargo Gallegos W (2001) A fluid inclusion reconnaissance study of the Huanuni tin deposit (Bolivia), using LA-ICP-MS micro-analysis. Mineral Deposita 36:680–688. https://doi.org/10.1007/s001260100195

    Article  Google Scholar 

  • Murakami H, Ishihara S (2013) Trace elements of Indium-bearing sphalerite from tin- polymetallic deposits in Bolivia, China and Japan: a femto-second LA-ICPMS study. Ore Geol Rev 53:223–243. https://doi.org/10.1016/j.oregeorev.2013.01.010

    Article  Google Scholar 

  • Murciego A, Sanchez AG, Dusausoy Y, Pozas JM, Ruck R (1997) Geochemistry and EPR of cassiterites from the Iberian Hercynian Massif. Mineral Mag 61:357–365. https://doi.org/10.1180/minmag.1997.061.406.03

    Article  Google Scholar 

  • Nascimento T, Souza V (2017) Mineralogy, stable isotopes (δ18O and δ34S) and 40Ar-39Ar geochronology studies on the hydrothermal carapace of the Igarapé Manteiga W-Sn deposit, Rondônia. Braz J Geol 47:591–613. https://doi.org/10.1590/2317-4889201720170068

    Article  Google Scholar 

  • Neiva A (2008) Geochemistry of cassiterite and wolframite from tin and tungsten quartz veins in Portugal. Ore Geol Rev 33:221–238. https://doi.org/10.1016/j.oregeorev.2006.05.013

    Article  Google Scholar 

  • Neymark L, Holm-Denoma C, Moscati R (2018) In situ LA-ICPMS U–Pb dating of cassiterite without a known-age matrix-matched reference material: examples from worldwide tin deposits spanning the Proterozoic to the tertiary. Chem Geol 483:410–425. https://doi.org/10.1016/j.chemgeo.2018.03.008

    Article  Google Scholar 

  • Nupen S (2019) Mineral resource estimates for the Falchani lithium project in the Puno district of Peru. Prepared for Plateau Energy Metals Inc. under the Guidelines of National Instrument 43-101 and accompanying documents NI 43-101.F1 and NI 43-101.CP. Report No: C-MYI-EXP-1727-1134

  • Pastor M, Pastor A, Torró L, Martínez A, Artiaga D, Torres B, Tauler E, Melgarejo JC, Paillo F, Arce-Burgoa OR, Alfonso P (2015) The San José-Itos mines, Oruro, Bolivia: structure and Ag-Sn mineralization. Abstracts, 13th SGA Biennial Meeting, Nancy, 1:327–330

  • Paton C, Woodhead JD, Hellstrom JC, Hergt JM, Greig A, Maas R (2010) Improved laser ablation U-Pb zircon geochronology through robust downhole fractionation correction. Geochem Geophys Geosyst 11:1–36. https://doi.org/10.1029/2009GC002618

    Article  Google Scholar 

  • Pavlova GG, Palessky SV, Borisenko AS, Vladimirov AG, Seifert T, Phan L (2015) Indium in cassiterite and ores of tin deposits. Ore Geol Rev 66:99–113. https://doi.org/10.1016/j.oregeorev.2014.10.009

    Article  Google Scholar 

  • Petersen U (1970) Metallogenic provinces in South America. Geol Rundsch 59:834–897. https://doi.org/10.1007/bf02042275

    Article  Google Scholar 

  • Petrus JA, Kamber BS (2012) VizualAge: a novel approach to laser ablation ICP-MS U-Pb geochronology data reduction. Geostand Geoanal Res 36:247–270. https://doi.org/10.1111/j.1751-908X.2012.00158.x

    Article  Google Scholar 

  • Picard D, Sempere T, Plantard O (2008) Direction and timing of uplift propagation in the Peruvian Andes deduced from molecular phylogenetics of highland biotaxa. Earth Planet Sc Lett 271:326–336. https://doi.org/10.1016/j.epsl.2008.04.024

    Article  Google Scholar 

  • Pichavant M, Herrera JV, Boulmier S, Briqueu L, Joron JL, Juteau M, Marin L, Michard A, Sheppard MFS, Treuil M, Vernet M (1987) The Macusani glasses, SE Peru: evidence of chemical fractionation in peraluminous magmas. In: Mysen BO (ed) Magmatic Processes: Physicochemical Principles, vol 1. Geo Soc S P, pp 359–374

  • Pichavant M, Kontak DJ, Briqueu L, Herrera JV, Clark AH (1988a) The Miocene-Pliocene Macusani Volcanics, SE Peru I. Mineralogy and magmatic evolution of a two-mica aluminosilicate-bearing ignimbrite suite. Contrib Mineral Petrol 100:300–324. https://doi.org/10.1007/BF00379742

    Article  Google Scholar 

  • Pichavant M, Kontak DJ, Briqueu L, Herrera JV, Clark AH (1988b) The Miocene-Pliocene Macusani Volcanics, SE Peru II. Geochemistry and origin of a felsic peraluminous magma. Contrib Mineral Petrol 100:325–338. https://doi.org/10.1007/BF00379742

    Article  Google Scholar 

  • Plimer IR, Lu J, Kleeman JD (1991) Trace and rare earth elements in cassiterite - sources of components for the tin deposits of the Mole Granite, Australia. Mineral Deposita 26:267–274. https://doi.org/10.1007/BF00191072

    Article  Google Scholar 

  • Pollard PJ, Pichavant M, Charoy B (1987) Contrasting evolution of fluorine- and boron-rich tin systems. Mineral Deposita 22:315–321. https://doi.org/10.1007/BF00204525

    Article  Google Scholar 

  • Poupeau G, Labrin E, Sabil N, Bigazzi G, Arroyo G, Vatin-Pérignon N (1993) Fission-track dating of 15 macusanite glass pebbles from the Macusani volcanic field (SE Peru). Nucl Tracks Radiat Meas 21:499–506. https://doi.org/10.1016/1359-0189(93)90189-G

    Article  Google Scholar 

  • Pring A, Wade B, McFadden A, Lenehan CE, Cook NJ (2020) Coupled substitutions of minor and trace elements in co-existing sphalerite and wurtzite. Minerals 10:147. https://doi.org/10.3390/min10020147

    Article  Google Scholar 

  • Rakovan J, McDaniel DK, Reeder RJ (1997) Use of surface-controlled REE sectoral zoning in apatite from Llallagua, Bolivia, to determine a single-crystal SmNd age. Earth Planet Sci Lett 146:329–336. https://doi.org/10.1016/S0012-821X(96)00226-9

    Article  Google Scholar 

  • Redwood S (1993) The Metallogeny of the Bolivian Andes. Mineral Deposit Research Unit Short Course No. 15 University of British Columbia, Vancouver

  • Redwood SD, MacIntyre RM (1989) K-Ar dating of Miocene magmatism and related epithermal mineralization of the northeastern Altiplano of Bolivia. Econ Geol 84:618–630. https://doi.org/10.2113/gsecongeo.84.3.618

    Article  Google Scholar 

  • Reitsma MJ (2012) Reconstructing the Late Paleozoic–Early Mesozoic plutonic and sedimentary record of South-East Peru: orphaned back-arcs along the western margin of Gondwana. PhD thesis Terre & Environment 111. University of Geneva, Switzerland

  • Revollo R (1967) Geología de la Cordillera de Santa Vera Cruz: Tesis de Grado, Universidad Mayor San Andrés, La Paz

  • Rivas S, Carrasco R (1968) Geología y yacimientos minerales de la Region de Potosi. Bol Geol Bol 11

  • Roperch P, Sempere T, Macedo O, Arriagada C, Fornari M, Tapia C, García M, Laj C (2006) Counterclockwise rotation of late Eocene–Oligocene fore-arc deposits in southern Peru and its significance for oroclinal bending in the Central Andes. Tectonics 25:TC3010. https://doi.org/10.1029/2005TC001882

    Article  Google Scholar 

  • Samson IM, Wood SA (2004) The rare earth elements: behaviour in hydrothermal fluids and concentration in hydrothermal mineral deposits, exclusive of alkaline settings. In: Linnen RL, Samson IM (eds) Rare element geochemistry and mineral deposits. Geological Association of Canada Short Course Notes, vol 17. Geol Assoc Can, pp 269–298

  • Sandeman HA, Clark AH, Farrar E (1995) An integrated tectono-magmatic model for the evolution of the southern Peruvian Andes (13°-20°S) since 55 Ma. Int Geol Rev 37:1039–1073. https://doi.org/10.1080/00206819509465439

    Article  Google Scholar 

  • Sandeman HA, Clark AH, Farrar E, Arroyo G (1997) Lithostratigraphy, petrology and 40Ar/39Ar geochronology of the Crucero Supergroup, Puno Department, SE Peru. J S Am Earth Sci 10:223–245. https://doi.org/10.1016/S0895-9811(97)00023-0

    Article  Google Scholar 

  • Schildgen FT, Hoke DG (2018) The topographic evolution of the Central Andes. Elements 14:231–236. https://doi.org/10.2138/gselements.14.4.231

    Article  Google Scholar 

  • Schulz KJ, DeYoung JH Jr, Seal RR II, Bradley DC (2017) Critical mineral resources of the United States—economic and environmental geology and prospects for future supply. Geol Surv Prof Pap 1802:797. https://doi.org/10.3133/pp1802

    Article  Google Scholar 

  • Schwarz-Schampera U, Herzig PM (2002) Indium: geology, mineralogy and economics. Springer, Heidelberg

    Book  Google Scholar 

  • Sciuba M, Beaudoin G, Makvandi S (2020) Chemical composition of tourmaline in orogenic gold deposits. Miner Deposita, In Press https://doi.org/10.1007/s00126-020-00981-x

  • Scotese CR (2009) Late Proterozoic plate tectonics and palaeogeography: A tale of two supercontinents, Rodinia and Pannotia. In: Craig J, Thurow J, Thusu B, Whitham A, Abutarruma Y (eds) Global Neoproterozoic Petroleum Systems: The Emerging Potential in North Africa, vol 326. Geological Society, Special Publications, London, pp 67–83

    Google Scholar 

  • Sempere T (1994) Kimmeridgian? To Paleocene tectonic evolution of Bolivia. In Salfity JA (ed) Cretaceous tectonics in the Andes. Vieweg Publications, Earth Evolution Sciences Monograph Series, Wiesbaden, pp. 168–212

  • Sempere T (1995) Phanerozoic evolution of Bolivia and adjacent regions. In: Tankard AJ, Suárez R, Welsink HJ (eds) Petroleum Basins of South America. AAPG Mem 62:207–230. https://doi.org/10.1306/M62593C9

  • Sempere T (2000) Discussion of “sediment accumulation on top of the Andean orogenic wedge: Oligocene to late Miocene basins of the eastern Cordillera, southern Bolivia” (Horton, 1998). Geol Soc Am Bull 112:1752–1755

    Article  Google Scholar 

  • Sempere T, Hérail G, Oller, Bonhomme MG (1990) Late Oligocene- Early Miocene major tectonic crisis and related basins in Bolivia. Geology 18:946–949. https://doi.org/10.1130/0091-7613(1990)018<0946:LOEMMT>2.3.CO;2

    Article  Google Scholar 

  • Sempere T, Butler RF, Richards DR, Marshall LG, Sharp W, Swisher CC III (1997) Stratigraphy and chronology of Late Cretaceous – Early Paleogene strata in Bolivia and Northwest Argentina. Geol Soc Am Bull 109:709–727. https://doi.org/10.1130/0016-7606(1997)109%3C0709:SACOUC%3E2.3.CO;2

    Article  Google Scholar 

  • Sempere T, Carlier G, Soler P, Fornari M, Carlotto V, Jacay J, Arispe O, Néraudeau D, Cárdenas J, Rosas S, Jiménez N (2002) Late Permian–Middle Jurassic lithospheric thinning in Peru and Bolivia, and its bearing on Andean-age tectonics. Tectonophysics 345:153–181. https://doi.org/10.1016/S0040-1951(01)00211-6

    Article  Google Scholar 

  • Sempere T, Folguera A, Gerbault M (2008) New insights into the Andean evolution: an introduction to contributions from the 6th ISAG symposium (Barcelona, 2005). Tectonophysics 459:1–13. https://doi.org/10.1016/j.tecto.2008.03.011

    Article  Google Scholar 

  • Serranti S, Ferrini V, Umberto M, Cabri LJ (2002) Trace-element distribution in cassiterite and sulfides from rubané and massive ores of the Corvo deposit, Portugal. Can Mineral 40:815–835. https://doi.org/10.2113/gscanmin.40.3.815

    Article  Google Scholar 

  • Sillitoe RH (1972) Relation of metal provinces in western America to subduction of oceanic lithosphere. Geol Soc Am Bull 83:813–818. https://doi.org/10.1130/0016-7606

    Article  Google Scholar 

  • Sillitoe RH (1976) Andean mineralization: a model for the metallogeny of convergent plate margins. Geol Assoc Can Spec Pap 14:59–100

    Google Scholar 

  • Sillitoe RH, Halls C, Grant JN (1975) Porphyry tin deposits in Bolivia. Econ Geol 70:913–927. https://doi.org/10.2113/gsecongeo.70.5.913

    Article  Google Scholar 

  • Sillitoe RH, Steele GB, Thompson JFH, Lang JR (1998) Advanced argillic lithocaps in the Bolivian tin-silver belt. Mineral Deposita 33:539–546. https://doi.org/10.1007/s001260050170

    Article  Google Scholar 

  • Skirrow RG, Huston DL, Mernagh TP, Thorne JP, Dulfer H, Senior AB (2013) Critical commodities for a high-tech world: Australia’s potential to supply global demand. Geoscience Australia, Canberra

  • Slater ET, Kontak DJ, Mcdonald AM, Fayek M (2020) Origin of a multi-stage epithermal Ag-Zn-Pb-Sn deposit: the Miocene Cortaderas breccia body, Pirquitas mine, NW Argentina. Miner Deposita, in press https://doi.org/10.1007/s00126-020-00976-8

  • Soler P, Jiménez N (1993) Magmatic constraints upon the evolution of the Bolivian Andes since Late Oligocene times. Extended abstracts, 2nd International Symposium on Andean Geodynamics, Oxford, pp. 447–451

  • Spikings R, Reitsma MJ, Boekhout F, Mišković A, Ulianov A, Chiaradia M, Gerdes A, Schaltegger U (2016) Characterisation of Triassic rifting in Peru and implications for the early disassembly of western Pangaea. Gondwana Res 35:124–143. https://doi.org/10.1016/j.gr.2016.02.008

    Article  Google Scholar 

  • Stewart JW, Evernden JF, Snelling NJ (1974) Age determinations from Andean Peru: a reconnaissance survey. Geol Soc Am Bull 85:1107–1116. https://doi.org/10.1130/0016-7606(1974)85%3C1107:ADFAPA%3E2.0.CO;2

    Article  Google Scholar 

  • Sugaki A, Ueno H, Shimada N, Kitakaze A, Hayashi K, Shima H, Sanjines O, Saavedra M (1981) Geological study on the polymetallic hydrothermal deposits in the Oruro district, Bolivia. Sci Rep Tohoku Univ Series III 15:1–52

    Google Scholar 

  • Sugaki A, Ueno H, Shimada N, Kusachi I, Kitakaze A, Hayashi K, Kojima S, Sanjines VO (1983) Geological study on the polymetallic ore deposits in the Potosi district, Bolivia. Sci Rep Tohoku Univ Series III 15(3):409–460

    Google Scholar 

  • Sugaki A, Ueno H, Kitakaze A, Hayashi K, Shimada N, Kusachi I, Sanjunes VO (1985) Geological study on the ore deposits in the La Paz district, Bolivia. Sci Rep Tohoku Univ Series III 16(2):132–198

    Google Scholar 

  • Sugaki A, Kusachi I, Shimada N (1988a) Granite-series and -type of igneous rocks in the Bolivian Andes and their genetic relation to tin-tungsten mineralization. Min Geol 38:121–130. https://doi.org/10.11456/shigenchishitsu1951.38.121

  • Sugaki A, Kojima S, Shimada N (1988b) Fluid inclusion studies of the polymetallic hydrothermal ore deposits in Bolivia. Mineral Deposita 23:9–15. https://doi.org/10.1007/BF00204221

    Article  Google Scholar 

  • Sugaki A, Ueno H, Hayashi K (1990) Sulfur isotope reconnaissance of Bolivian hydrothermal deposits. Min Geol 40:299–312. https://doi.org/10.11456/shigenchishitsu1951.40.299

    Article  Google Scholar 

  • Sugaki A, Shimada N, Ueno H, Kano S (2003) K–Ar ages of tin-polymetallic mineralization in the Oruro mining district, central Bolivian tin belt. Resour Geol 53:273–282. https://doi.org/10.1111/j.1751-3928.2003.tb00176.x

    Article  Google Scholar 

  • Sun SS, McDonough WF (1989) Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes. Geol Soc Lond Spec Publ 42:313–345. https://doi.org/10.1144/GSL.SP.1989.042.01.19

    Article  Google Scholar 

  • Taylor RG (1979) Geology of tin deposits. Elsevier, The Netherlands

    Google Scholar 

  • Thormann W (1966) Investigaciones preliminares sobre la geotectónica y metalogénesis de la zona Challapata-Caxata. Bol Serv Geol Bolivia 7:118

    Google Scholar 

  • Tindle AG, Breaks FW (1998) Oxide minerals of the separation rapids rare-element granitic pegmatite group, northwestern Ontario. Can Mineral 36:609–635

    Google Scholar 

  • Torres B, Melgarejo JC, Torró L, Camprubí A, Castillo-Oliver M, Artiaga D, Campeny M, Tauler E, Jiménez-Franco A, Alfonso P, Arce-Burgoa OR (2019) The Poopó polymetallic epithermal deposit, Bolivia: mineralogy, genetic constraints, and distribution of critical elements. Minerals 9:472. https://doi.org/10.3390/min9080472

    Article  Google Scholar 

  • Torró L, Melgarejo JC, Gemmrich L, Mollinedo D, Cazorla M, Martínez Á, Pujol-Solà N, Farré de Pablo J, Camprubí A, Artiaga D, Torres B, Alfonso P, Arce-Burgoa OR (2019a) Spatial and temporal controls on the distribution of indium in xenothermal vein deposits: the Huari Huari district, Potosí, Bolivia. Minerals 9:304. https://doi.org/10.3390/min9050304

    Article  Google Scholar 

  • Torró L, Cazorla M, Melgarejo JC, Camprubí A, Tarrés M, Gemmrich L, Campeny M, Castillo-Oliver M, Artiaga D, Torres B, Martínez A, Molliendo D, Alonso P, Arce-Burgoa OR (2019b) Indium mineralization in the volcanic dome-hosted Ánimas–Chocaya–Siete Suyos polymetallic deposit, Potosí, Bolivia. Minerals 9:604. https://doi.org/10.3390/min9100604

    Article  Google Scholar 

  • Tshijik Karumb E (2016) The recovery of indium from mining wastes. PhD thesis, Colorado School of Mines

  • Turneaure FS (1935) The tin deposits of Llallagua, Bolivia. Econ Geol 30:14–60. https://doi.org/10.2113/gsecongeo.30.1.14

    Article  Google Scholar 

  • Turneaure FS (1971) The Bolivian tin-silver province. Econ Geol 66:215–225. https://doi.org/10.2113/gsecongeo.66.2.215

    Article  Google Scholar 

  • U.S. Geological Survey (2020) Mineral commodity summaries 2020. U.S. Geological Survey. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020.pdf. Accessed 19 Jun 2020

  • Vermeesch P (2018) IsoplotR: a free and open toolbox for geochronology. Geosci Front 9:1479–1493. https://doi.org/10.1016/j.gsf.2018.04.001

    Article  Google Scholar 

  • Wise M, Brown C (2011) Chemical composition of coexisting columbite-group minerals and cassiterite from the Black Mountain pegmatite, Maine. Eur J Mineral 23:817–828. https://doi.org/10.1127/0935-1221/2011/0023-2102

    Article  Google Scholar 

  • Wörner G, Schildgen TF, Reich M (2018a) The Central Andes: elements of an extreme land. Elements 14:225–230. https://doi.org/10.2138/gselements.14.4.225

    Article  Google Scholar 

  • Wörner G, Mamani M, Blum-Oeste M (2018b) Magmatism in the Central Andes. Elements 14:237–244. https://doi.org/10.2138/gselements.14.4.237

    Article  Google Scholar 

  • Zhang DL, Peng JT, Hu RZ, Yuan SD, Zheng DS (2011) The closure of U-Pb system in cassiterite and its reliability for dating. Dizhi Lunping <Geol Rev> 57:549–554 (in Chinese with English abstract)

  • Zhang R, Lu J, Lehmann B, Li C, Li G, Zhang L, Guo J, Sun W (2017) Combined zircon and cassiterite U–Pb dating of the Piaotang granite-related tungsten–tin deposit, southern Jiangxi tungsten district, China. Ore Geol Rev 82:268–284. https://doi.org/10.1016/j.oregeorev.2016.10.039

    Article  Google Scholar 

  • Zhang S, Zhang R, Lu J, Ma D, Ding T, Gao S, Zhang Q (2019) Neoproterozoic tin mineralization in South China: geology and cassiterite U–Pb age of the Baotan tin deposit in northern Guangxi. Mineral Deposita 54:1125–1142. https://doi.org/10.1007/s00126-019-00862-y

    Article  Google Scholar 

  • Zhao Y, Chen S, Huang Y, Zhao J, Xiang T, Chen X (2019) U-Pb ages, O isotope compositions, Raman spectrum, and geochemistry of cassiterites from the Xi’ao copper-tin polymetallic deposit in Gejiu District, Yunnan Province. Minerals 9:212. https://doi.org/10.3390/min9040212

    Article  Google Scholar 

  • Zoheir B, Lehmann B, Emam A, Radwan A, Zhang R, Bain WM, Steele-MacInnis M, Nolte N (2020) Extreme fractionation and magmatic–hydrothermal transition in the formation of the Abu Dabbab rare-metal granite, Eastern Desert, Egypt. Lithos:352–353. Article 105329. https://doi.org/10.1016/j.lithos.2019.105329

Download references

Acknowledgments

This study was economically supported by the Peruvian CONCYTEC-FONDECYT-World Bank project 107-2018-FONDECYT-BM-IADT-AV and the Catalan project 2017-SGR-00707. We gratefully acknowledge Pura Alfonso (Polytechnic University of Catalonia) for providing cassiterite samples from the Llallagua deposit. The Bolivian State Mining Company (Corporación Minera de Bolivia (COMIBOL)) granted its permission to the authors to access the Huanuni mine and to perform the necessary sampling; J.C. Ayaviri, J. Araca, R. Condori, N. Guevara, and all individuals at COMIBOL are cordially thanked for their kind and efficient help during field work. The help and hospitality extended by the miners from mining cooperatives during sampling and field work are most gratefully acknowledged. We appreciate the technical support by Xavier Llovet (CCiT-UB) during the acquisition of EPMA data and by Peter Tollan (ETH) during the acquisition of LA-ICP-MS data. We are grateful to Daniel Kontak, Matthieu Harlaux, and Editor-in-Chief Bernd Lehmann for their constructive comments which significantly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisard Torró.

Additional information

Editorial handling: B. Lehmann

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(PDF 520 kb)

ESM 2

(PDF 992 kb)

ESM 3

(PDF 698 kb)

ESM 4

(XLSX 39 kb)

ESM 5

(XLSX 12 kb)

ESM 6

(XLSX 1676 kb)

ESM 7

(XLSX 125 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gemmrich, L., Torró, L., Melgarejo, J.C. et al. Trace element composition and U-Pb ages of cassiterite from the Bolivian tin belt. Miner Deposita 56, 1491–1520 (2021). https://doi.org/10.1007/s00126-020-01030-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-01030-3

Keywords

Navigation