Skip to main content
Log in

Geology and ore genesis of the carbonatite-associated Yangibana REE district, Gascoyne Province, Western Australia

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Yangibana rare earth element (REE) district consists of multiple mineral deposits/prospects hosted within the Mesoproterozoic Gifford Creek Carbonatite Complex (GCCC), Western Australia, which comprises a range of rock types including calcite carbonatite, dolomite carbonatite, ankerite–siderite carbonatite, magnetite–biotite dykes, silica-rich alkaline veins, fenite, glimmerites and what have historically been called “ironstones”. The dykes/sills were emplaced during a period of extension and/or transtension, likely utilising existing structures. The Yangibana REE deposits/prospects are located along many of these structures, particularly along the prominent Bald Hill Lineament. The primary ore mineral at Yangibana is monazite, which is contained within ankerite–siderite carbonatite, magnetite–biotite dykes and ironstone units. The ironstones comprise boxwork-textured Fe oxides/hydroxides, quartz, chalcedony and minor monazite and subordinate rhabdophane. Carbonate mineral-shaped cavities in ironstone, fenite and glimmerite alteration mantling the ironstone units, and ankerite–siderite carbonatite dykes altering to ironstone-like assemblages in drill core indicate that the ironstones are derived from ankerite–siderite carbonatite. This premise is further supported by similar bulk–rock Nd isotope composition of ironstone and other alkaline igneous rocks of the GCCC. Mass balance evaluation shows that the ironstones can be derived from the ankerite–siderite carbonatites via significant mass removal, which has resulted in passive REE concentration by ~ 2 to ~ 10 times. This mass removal and ore tenor upgrade is attributed to extensive carbonate breakdown and weathering of ankerite–siderite carbonatite by near-surface meteoric water. Monazite from the ironstones has strong positive and negative correlations between Pr and Nd, and Nd and La, respectively. These relationships are reflected in the bulk–rock drill assays, which display substantial variation in the La/Nd throughout the GCCC. The changes in La/Nd are attributed to variations in primary magmatic composition, shifts in the magmatic-hydrothermal systems related to CO2 versus water-dominated fluid phases, and changes in temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aitken ARA, Betts PG, Young DA, Blankenship DD, Roberts JL, Siegert MJ (2016) The Australo-Antarctic Columbia to Gondwana transition. Gondwana Res 29:136–152

    Google Scholar 

  • Akers WT, Grove M, Harrison TM, Ryerson FJ (1993) The instability of rhabdophane and its unimportance in monazite paragenesis. Chem Geol 110:169–176

    Google Scholar 

  • Anand RR, Paine M (2002) Regolith geology of the Yilgarn Craton, Western Australia: implications for exploration. Aust J Earth Sci 49:3–162

    Google Scholar 

  • Andersen T (1984) Secondary processes in carbonatites: petrology of ‘rodberg’ (hematite-calcite-dolomite carbonatite) in the Fen central complex, Telmark (South Norway). Lithos 17:227–245

    Google Scholar 

  • Andersen AK, Clark JG, Larson PB, Donovan JJ (2017) REE fractionation, mineral speciation, and supergene enrichment of the Bear Lodge carbonatites, Wyoming, USA. Ore Geol Rev 89:780–807

    Google Scholar 

  • Armstrong JT (1991) Quantitative element analysis of individual microparticles with electron beam instruments. In: KFJ H, Newbury DE (eds) Electron probe quantification. Plenum Press, New York, pp 261–315

    Google Scholar 

  • Barker DS (1989) Field relations of carbonatites. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 38–69

    Google Scholar 

  • Chakhmouradian AR, Zaitsev AN (2012) Rare earth mineralization in igneous rocks: sources and processes. Elements 8:347–353

    Google Scholar 

  • Chakhmouradian AR, Reguir EP, Kressall RD, Crozier J, Pisiak LK, Sidhu R, Yang P (2015) Carbonatite-hosted niobium deposit at Aley, northern British Columbia (Canada): mineralogy, geochemistry and petrogenesis. Ore Geol Rev 64:642–666

    Google Scholar 

  • Chen W, Honghui H, Bai T, Jiang S (2017) Geochemistry of monazite within carbonatite related REE deposits. Resources 6(4):51

    Google Scholar 

  • Clavier N, Podor R, Dacheux N (2011) Crystal chemistry of the monazite structure. J Eur Ceram Soc 31:941–976

    Google Scholar 

  • Cressey G, Wall F, Cressey BA (1999) Differential REE uptake by sector growth of monazite. Mineral Mag 63(6):813–828

    Google Scholar 

  • Cutten HN, Johnson SP (2018) Kuparr tectonic event (KU): WA geology online, Explanatory Notes Extract. Geological Survey of Western Australia

  • Elliott HAL, Wall F, Chakhmouradian AR, Siegfried PR, Dahlgren S, Weatherley S, Finch AA, Marks MAW, Deady E (2018) Fenites associated with carbonatite complexes: a review. Ore Geol Rev 98:38–59

    Google Scholar 

  • Ernst RE (2014) Large igneous provinces. Cambridge University Press

  • Ernst RE, Bell K (2010) Large igneous provinces (LIPs) and carbonatites. Mineral Petrol 98:55–76

    Google Scholar 

  • Fisher CM, McFarlane CRM, Hanchar JM, Schmitz MD, Sylvester PJ, Lam R, Longerich HP (2011) Sm-Nd isotope systematics by laser ablation-multicollector-inductively coupled plasma mass spectrometry: methods and potential natural and synthetic reference materials. Chem Geol 284:1–20

    Google Scholar 

  • Fricker MB, Kutscher D, Aeschlimann B, Frommer J, Dietiker R, Bettmer J, Gunther D (2011) High spatial resolution trace element analysis by LA-ICP-MS using a novel ablation cell for multiple large samples. Int J Mass Spectrom 307:39–45

    Google Scholar 

  • Gaft G, Reisfeld R, Panczer G (2015) Modern luminescence spectroscopy of minerals and materials. Springer Mineralogy, Cham

    Google Scholar 

  • Gellatly DC (1975) Yangibana Creek U-Th-REE-base metal prospect, Gascoyne Goldfield, W.A. Amax Exploration (Australia) Inc

  • Giovannini AL, Bastos Neto AC, Porto CG, Pereira VP, Takehara L, Barbanson L, Bastos PHS (2017) Mineralogy and geochemistry of laterites from the Morro dos Seis Lagos Nb (Ti, REE) deposit (Amazonas, Brazil). Ore Geol Rev 88:461–480

    Google Scholar 

  • Goodenough KM, Schilling J, Jonsson E, Kalvig P, Charles N, Tuduri J, Deady EA, Sadeghi M, Schiellerup H, Müller A, Bertrand G, Arvanitidis N, Eliopoulos DG, Shaw RA, Thrane K, Keulen N (2016) Europe’s rare earth element resource potential: an overview of REE metallogenetic provinces and their geodynamic setting. Ore Geol Rev 72:838–856

    Google Scholar 

  • Gorobets BS, Rogojine A (2001) Luminescent spectra of minerals. RPC VIMS, Moscow (in Russian)

    Google Scholar 

  • Gramaccioli CM, Segalstad TM (1978) A uranium-and thorium-rich monazite from a south-alpine pegmatite at Piona, Italy. Am Miner 63:757–761

  • Grant JA (1986) The isocon diagram-a simple solution to Gresens’ equation for metasomatic alteration. Econ Geol 81:1976–1982

  • Gresens RL (1967) Composition-volume relationships of metasomatism. Chem Geol 2:47–65

    Google Scholar 

  • Guillong M, Meier DL, Allan MM, Heinrich CA, Yardley BWD (2008) SILLS: a MATLAB-based program for the reduction of laser ablation ICP-MS dat of homogenous materials and inclusions. In: Sylvester P (ed) Laser ablation ICP-MS in the Earth Sciences: current practices and outstanding issues. Mineralogical Association of Canada, Vancouver, pp 328–333

    Google Scholar 

  • Hastings Technology Metals (2019) News: 13% Increase in measured and indicated mineral resources. Retrieved from https://hastingstechmetals.com/2019/10/13-increase-in-measured-and-indicated-mineral-resources/ on May 3, 2020

  • Jaireth S, Hoatson DM, Miezitis Y (2014) Geological setting and resources of the major rare-earth-element deposits in Australia. Ore Geol Rev 62:72–128

    Google Scholar 

  • Janots E, Brunet F, Goffé B, Poinssot C, Burchard M, Cemic L (2008) Thermochemical characterization of Ca4La6(SiO4)6(OH)2 a synthetic La-and OH-analogous of britholite: implication for monazite and LREE apatites stability. Mineralogia 39:41–52

    Google Scholar 

  • Jelsma HA, de Wit MJ, Thiart C, Dirks PHGM, Viola G, Basson IJ, Anckar E (2004) Preferential distribution along transcontinental corridors of kimberlites and related rocks of Southern Africa. S Afr J Geol 107:301–324

    Google Scholar 

  • Johnson SP, Sheppard S, Rasmussen B, Wingate MTD, Kirkland CL, Muhling JR, Fletcher IR, Belousova EA (2011) Two collisions, two sutures: punctuated pre-1950 Ma assembly of the West Australian Craton during the Ophthalmian and Glenburgh Orogenies. Precambrian Res 189:239–262

    Google Scholar 

  • Johnson SP, Thorne AM, Tyler IM, Korsch RJ, Kennett BLN, Cutten HN, Goodwin J, Blay O, Blewett RS, Joly A, Dentith MC, Aitken ARA, Holzschuh J, Salmon M, Reading A, Heinson G, Boren G, Ross J, Costelloe RD, Fomin T (2013) Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny. Aust J Earth Sci 60:681–705

    Google Scholar 

  • Johnson SP, Korhonen FJ, Kirkland CL, Cliff JB, Belousova EA, Sheppard S (2017) An isotopic perspective on growth and differentiation of Proterozoic orogenic crust: from subduction magmatism to cratonization. Lithos 268-271:76–86

    Google Scholar 

  • Korhonen FJ, Johnson SP, Fletcher IR, Rasmussen B, Sheppard S, Muhling JR, Dunkley DJ, Wingate MTD, Roberts MP, Kirkland CL (2015) Pressure-temperature-time evolution of the Mutherbukin Tectonic Event, Capricorn Orogen. Geological Survey of Western Australia, Report 146, pp 64

  • Le Bas MJ (1989) Diversification of carbonatite. In: Bell K (ed) Carbonatites genesis and evolution. Unwin Hyman Ltd, London, pp 428–447

    Google Scholar 

  • Le Maitre RW (2002) Igneous rocks: a classification and glossary of terms: recommendations of International Union of Geological Sciences, subcomission on the systematics of igneous rocks. Cambridge University Press, Cambridge

    Google Scholar 

  • Lenz C, Talla D, Ruschel K, Škoda R, Götze J, Nasdala L (2013) Factors affecting the Nd3+ (REE3+) luminescence of minerals. Mineral Petrol 107(3):415–428

    Google Scholar 

  • López-Moro FJ (2012) EASYGRESGRANT—A Microsoft excel spreadsheet to quantify volume changes and to perform mass-balance modeling in metasomatic systems. Comput Geosci 39:191–196

    Google Scholar 

  • Lottermoser BG (1990) Rare-earth element mineralisation within the Mt. Weld carbonatite laterite, Western Australia. Lithos 24:151–167

    Google Scholar 

  • Luo Y, Gao S, Longerich HP, Gunter D, Wunderli S, Yuan H-L, Liu X-M (2007) The uncertainty budget of the multi-element analysis of glasses using LA-ICP-MS. J Anal Spectrom 22:122–130

    Google Scholar 

  • MacLean WH, Kranidiotis P (1987) Immobile elements as monitors of mass transfer in hydrothermal alteration, Phelps Dodge massive sulfide deposit, Matagami, Quebec. Econ Geol 82:951–962

    Google Scholar 

  • Mariano AN (1989) Nature of economic mineralization in carbonatites and related rocks. In: Bell K (ed) Carbonatites genesis and evolution. Unwin Hyman, London, pp 149–176

    Google Scholar 

  • Marien C, Dijkstra AH, Wilkins C (2018) The hydrothermal alteration of carbonatite in the Fen Complex, Norway: mineralogy, geochemistry, and implications for rare-earth element resource formation. Mineral Mag 82(S1):S115–S131

    Google Scholar 

  • Martin DM, Thorne AM (2004) Tectonic setting and basin evolution of the Bangemall Supergroup in the northwestern Capricorn Orogen. Precambrian Res 128:385–409

    Google Scholar 

  • McDonough WF, Sun Ss (1995) The composition of the earth. Chem Geol 120:223–253

    Google Scholar 

  • Migdisov A, Williams-Jones AE, Brugger J, Caporuscio FA (2016) Hydrothermal transport, deposition, and fractionation of the REE: experimental data and thermodynamic calculations. Chem Geol 439:13–42

    Google Scholar 

  • Mitchell RH (2015) Primary and secondary niobium mineral deposits associated with carbonatites. Ore Geol Rev 64:626–641

    Google Scholar 

  • Moore M, Chakhmouradian AR, Mariano AN, Sidhu R (2015) Evolution of rare-earth mineralization in the Bear Lodge carbonatite, Wyoming: mineralogical and isotopic evidence. Ore Geol Rev 64:499–521

    Google Scholar 

  • Morteani G, Preinfalk C (1996) REE distribution and REE carriers in laterites formed on the alkaline complexes of Araxa and Catalao (Brazil). In: Jones AP, Wall F, Williams CT (eds) Rare earth minerals: chemistry, origin and ore deposits. Chapman and Hall, London

    Google Scholar 

  • Olierook HKH, Agangi A, Plavsa D, Reddy SM, Yao W, Clark C, Occhipinti SA, Kylander-Clark ARC (2019) Neoproterozoic hydrothermal activity in the West Australian Craton related to Rodinia assembly or breakup? Gondwana Res 68:1–12

    Google Scholar 

  • Pearson JM (1996) Alkaline rocks of the Gifford Creek Complex, Gascoyne Province, Western Australia: their petrogenetic and tectonic significance Department of Geology and Geophysics. Phd thesis. University of Western Australia, pp 462

  • Pearson JM, Taylor WR (1996) Mineralogy and geochemistry of fenitized alkaline ultrabasic sills of the Gifford Creek Complex, Gascoyne Province, Western Australia. Can Mineral 34:201–219

    Google Scholar 

  • Pearson JM, Taylor WR, Barley ME (1996) Geology of the alkaline Gifford Creek Complex, Gascoyne Complex, Western Australia. Aust J Earth Sci 43:299–309

    Google Scholar 

  • Pettke T (2008) Analytical protocols for element concentration and isotope ratio measurements in fluid inclusions by LA-(MC)-ICP-MS. In: Sylvester P (ed) Laser ablation ICP-MS in earth sciences: current practices and outstanding issues. Mineral Association of Canada, Vancouver, pp 189–218

    Google Scholar 

  • Pettke T, Oberlie F, Audetat A, Guillong M, Simon AC, Hanley JJ, Klemm LM (2012) Recent developments in element concentration and isotope ratio analysis of individual fluid inclusions by laser ablation single and multiple collector ICP-MS. Ore Geol Rev 44:10–38

    Google Scholar 

  • Pillans B (2007) Pre-Quaternary landscape inheritance in Australia. J Quat Sci 22:439–447

    Google Scholar 

  • Pirajno F (2015) Intracontinental anorogenic alkaline magmatism and carbonatites, associated mineral systems and the mantle plume connection. Gondwana Res 27:1181–1216

    Google Scholar 

  • Pirajno F, González-Álvarez I (2013) The ironstone veins of the Gifford Creek ferrocarbonatite complex, Gascoyne Province: Geological Survey of Western Australia, Record 2013/12, pp 19

  • Pirajno F, González-Álvarez I, Chen W, Kyser KT, Simonetti A, Leduc E, leGras M (2014) The Gifford Creek Ferrocarbonatite Complex, Gascoyne Province, Western Australia: associated fenitic alteration and a putative link with the ~1075 Ma Warakurna LIP. Lithos 202–203:100–119

    Google Scholar 

  • Pisarevsky SA, Wingate MTD, Li Z-X, Wang X-C, Tohver E, Kirkland CL (2014) Age and paleomagnetism of the 1210Ma Gnowangerup–Fraser dyke swarm, Western Australia, and implications for late Mesoproterozoic paleogeography. Precambrian Res 246:1–15

    Google Scholar 

  • Richter DK, Görgen P, Götte T (2008) Monazite cathodoluminescence - a new tool for heavy mineral analysis of siliciclastic rocks. Sediment Geol 209:36–41

    Google Scholar 

  • Roncal-Herrero T, Rodríguez-Blanco JD, Oelkers EH, Benning LG (2011) The direct precipitation of rhabdophane (REEPO4·nH2O) nano-rods from acidic aqueous solutions at 5–100°C. J Nanopart Res 13:4049–4062

    Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic sutdies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A 32:752–767

    Google Scholar 

  • Sheppard S, Occhipinti SA, Nelson DR (2005) Intracontinental reworking in the Capricorn Orogen, Western Australia: the 1680 - 1620 Ma Mangaroon Orogeny. Aust J Earth Sci 52:443–460

    Google Scholar 

  • Sheppard S, Rasmussen B, Muhling JR, Farrell TR, Fletcher IR (2007) Grenvillian-aged orogenesis in the Palaeoproterozoic Gascoyne Complex, Western Australia: 1030-950 Ma reworking of the Proterozoic Capricorn Orogen. J Metamorph Geol 25:477–494

    Google Scholar 

  • Sheppard S, Bodorkos SP, Johnson SP, Wingate MTD, Kirkland CL (2010) The Paleoproterozic Capricorn Orogeny: intracontinental reworking not continent-continent collision. Geological Survey of Western Australia, Report 108, pp 33

  • Slezak P, Spandler C (2019) Carbonatites as recorders of mantle-derived magmatism and subsequent tectonic events: an example of the Gifford Creek Carbonatite Complex, Western Australia. Lithos 328-329:212–227

    Google Scholar 

  • Slezak P, Spandler C (2020) Petrogenesis of the Gifford Creek Carbonatite Complex, Western Australia. Contrib Mineral Petrol 175(3):28

    Google Scholar 

  • Slezak P, Spandler C, Blake K (2018) Ghosts of apatite past: using hyperspectral cathodoluminescence and micro-geochemical data to reveal multi-generational apatite in the Gifford Creek Carbonatite Complex, Australia. Can Mineral 56:773–797

    Google Scholar 

  • Smith MP, Henderson P, Campbell LS (2000) Fractionation of the REE during hydrothermal processes: constraints from the Bayan Obo Fe-REE-Nb deposit, Inner Mongolia, China. Geochim Cosmochim Acta 64:3141–3160

    Google Scholar 

  • Smithies RH, Kirkland CL, Korhonen FJ, Aitken ARA, Howard HM, Maier WD, Wingate MTD, Quentin de Gromard R, Gessner K (2015) The Mesoproterozoic thermal evolution of the Musgrave Province in central Australia - plume vs. the geological record. Gondwana Res 27:1419–1429

    Google Scholar 

  • Spandler C, Pettke T, Rubatto D (2011) Internal and external fluid sources for eclogite-facies veins in the Monviso meta-ophiolite, Western Alsps: implications for fluid flow in subduction zones. J Petrol 52:1207–1236

    Google Scholar 

  • Stark JC, Wang X-C, Li Z-X, Denyszyn S, Rasmussen B, Zi J-W (2018) 1.39 Ga mafic dyke swarm in the southwestern Yilgarn Craton marks Nuna to Rodinia transition in the West Australian Craton. Precambrian Res 316:291–304

    Google Scholar 

  • Torpy A, Wilson NC (2008) OpticalFit software by CSIRO Australia

  • Treiman AH (1989) Carbonatite magma: properties and processes. In: Bell K (ed) Carbonatites: genesis and evolution. Unwin Hyman, London, pp 89–104

    Google Scholar 

  • Van Achterbergh E, Ryan CC, Jackson SE, Griffin WL (2001) Data reduction software for LA-ICP-MS. In: Sylvester PJ (ed) Laser-Ablation-ICP-MS in the earth sciences: principles and applications. Mineral Association of Canada, pp 239–243

  • Van Emdem B, Thornber MR, Graham J, Lincoln FJ (1997) The incorporation of actinides in monazite and xenotime from placer deposits in Western Australia. Can Mineral 35:95–104

    Google Scholar 

  • Vaughan APM, Scarrow JH (2003) K-rich mantle metasomatism control of localization and initiation of lithospheric strike-slip faulting. Terra Nova 15:163–169

    Google Scholar 

  • Verplanck PL, Mariano AN, Mariano A (2016) Rare earth element ore geology of carbonatites. In: Verplanck PL, Hitzman MW (eds) Rare earths and critical elements in ore deposits, vol 18. Society of Economic Geologists. Littleton, Colorado, pp 5–32

    Google Scholar 

  • Wade BP, Barovich KM, Hand M, Scrimgeour IR, Close DF (2006) Evidence of early Mesoproterozoic arc magmatism in the Musgrave Block, central Australia: implications for Proterozoic crustal growth and tectonic reconstructions of Australia. J Geol 114:43–63

    Google Scholar 

  • Wall F (2014) Rare earth elements. In: Gunn AG (ed) Critical metals handbook. Wiley, pp 312–339

  • Wall F, Zaitsev AN (2004) Rare earth metals in Kola carbonatites. In: Wall F, Zaitsev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society of Great Britain & Ireland, Cambridge, pp 341–373

    Google Scholar 

  • Walters A, Lusty P, Hill A (2011) Rare earth elements British Geological Survey mineral profiles. United Kingdom, pp 54

  • Woolley AR, Kempe DRC (1989) Carbonatites: nomenclature, average chemical compositions, and element distribution. In: Bell K (ed) Carbonatites genesis and evolution. Unwin Hyman Ltd, London, pp 1–14

    Google Scholar 

  • Zaitsev AN, Frances W, Le Bas MJ (1998) REE-Sr-Ba minerals from the Khibina carbonatites, Kola Peninsula, Russia: their mineralogy, paragenesis and evolution. Mineral Mag 62:225–250

    Google Scholar 

  • Zi JW, Gregory C, Rasmussen B, Sheppard S, Muhling JR (2017) Using monazite geochronology to test the plume model for carbonatites: the example of Gifford Creek Carbonatite Complex, Australia. Chem Geol 463:50–60

    Google Scholar 

Download references

Acknowledgements

We thank Hasting Technology Metals Limited for their sample contributions, drill hole data and hospitality while conducting fieldwork. We also thank Kevin Blake, Shane Askew, Brendan Jones and Yi Hu from the JCU Advanced Analytical Centre for their assistance with the EPMA, XRF and LA-ICP-MS analyses. We thank Kathryn Goodenough; Franco Pirajno; the handling editor, Robert Linnen; and the editor, Georges Beaudoin, for their reviews, which improved this manuscript.

Funding

An ARC Future Fellowship (FT 120100198) to Carl Spandler supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Slezak.

Additional information

Editorial handling: R. Linnen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 1487 kb)

ESM 2

(XLSX 166 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slezak, P., Spandler, C., Border, A. et al. Geology and ore genesis of the carbonatite-associated Yangibana REE district, Gascoyne Province, Western Australia. Miner Deposita 56, 1007–1026 (2021). https://doi.org/10.1007/s00126-020-01026-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-01026-z

Keywords

Navigation