Skip to main content

Advertisement

Log in

The role of the subducting slab and melt crystallization in the formation of magnetite-(apatite) systems, Coastal Cordillera of Chile

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The Mesozoic magnetite-(apatite) deposits of the Coastal Cordillera of Chile are interpreted as the product of the crystallization of oxidized iron-rich melts and subsequent hydrothermal alteration produced by related magmatic-hydrothermal systems. These deposits form a regional-scale mineral system controlled by the Atacama Fault System and where the mineralization spans more than 10 km in vertical extent. Individual sub-vertical bodies of massive magnetite coexist with and evolve vertically into pegmatite-, breccia-, and vein-like apatite-actinolite-magnetite/ilmenite rock. The mineralization is always hosted by a hydrothermal aureole of alkali-calcic-iron alteration that includes stockwork-like to disseminated mineralization. The deposits cluster in two groups. Those located in the northern part are mostly vein-like, and are hosted by Jurassic diorite. They have 87Sr/86Sri and εNdi values of 0.7042–0.7062 and + 5.1 to + 7.2, respectively. The southern group includes shallowly emplaced ore lenses in broadly coeval (sub-)volcanic intermediate rocks. They show similar 87Sr/86Sri signatures (0.7033–0.7065, with one value up to 0.7097) and more variable εNdi values (+ 3.9 to + 8.6). As a whole, the Sr-Nd data do not seem to be influenced by the type of crust intruded, but rather, likely track the mixing between a MORB-like reservoir and another source with elevated 87Sr/86Sri (≥ 0.706). The genetic model proposed involves the dehydration of variably altered subducted oceanic crust, the interaction of fluids released from the mantle wedge, the separation of iron-rich melts, and their ascent along transcrustal faults. The broadly coeval intermediate host rocks show a lesser contribution of subducted crust, something that perhaps excludes a genetic relationship between these rocks and the magnetite-(apatite) mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aguirre R (2001) Magmatic iron ore breccias in the Chilean Coastal Cordillera. La Falda and Bronce Sur mines, Pleito Melón district, III Region Chile. MSc, SUNY-Binghamton, New York, p 115

    Google Scholar 

  • Ancellin MA, Samaniego P, Vlastélic I, Nauret F, Gannoun A, Hidalgo S (2017) Across-arc versus along-arc Sr-Nd-Pb isotope variations in the Ecuadorian volcanic arc. Geochem Geophy Geosy 18:1163–1188

  • Apukhtina OB, Kamenetsky VS, Ehrig K, Kamenetsky MB, Maas R, Thompson J, McPhie J, Ciobanu CL, Cook NJ (2017) Early, deep magnetite-fluorapatite mineralization at the Olympic Dam Cu-U-Au-Ag deposit, South Australia. Econ Geol 112:1531–1542

    Google Scholar 

  • Arévalo C, Grocott J, Welkner D (2003) The Atacama Fault System in the Huasco province, southern Atacama Desert, Chile. Proceedings 10th Congreso Geológico Chileno. pp 1–5

  • Arevalo C, Grocott J, Martin W, Pringle M, Taylor G (2006) Structural setting of the Candelaria Fe oxide Cu-Au deposit, Chilean Andes (27°30'S). Econ Geol 101:819–841

    Google Scholar 

  • Babiak RN, Delgaudio S, Hanchar JM, Tornos F, Whitehouse MJ (2018) Geochemistry and geochronology of apatite and zircon from MtAp and IOCG deposits, Atacama desert, Chile. XIX Congreso Peruano de Geologia, Lima, Peru

    Google Scholar 

  • Badham JPN, Morton RD (2011) Magnetite-apatite intrusions and calc-alkali magmatism, Camsell River, N.W.T. Canad Jour Earth Sci 13:348–354

    Google Scholar 

  • Barra F, Reich M, Selby D, Rojas P, Simon A, Salazar E, Palma G (2017) Unraveling the origin of the Andean IOCG clan: a Re-Os isotope approach. Ore Geology Reviews 81, Part 1:62–78

    Google Scholar 

  • Barton MD, Johnson DA (1996) Evaporitic source model for igneous-related Fe oxide-(REE-Cu-Au-U) mineralization. Geology 24:259–262

    Google Scholar 

  • Benavides J, Kyser TK, Clark AH, Oates CJ, Zamora R, Tarnovschi R, Castillo B (2007) The Mantoverde iron oxide-copper-gold district, III region, Chile: the role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440

    Google Scholar 

  • Berg K, Baumann A (1985) Plutonic and metasedimentary rocks from the coastal range of northern Chile: Rb-Sr and U-Pb isotopic systematics. Earth Planet Sci Let 75:101–115

    Google Scholar 

  • Berg K, Breitkreuz C (1983) Mesozoische Plutone in der Nordchilenischen Kustenkordillere: Petrouenese. Geochronologie, Geochemie und Geodynamik mantelbetonter magmatique. Geotek Forsch 66:1–107

    Google Scholar 

  • Bonson CG (1998) Fracturing, fluid processes and mineralization in the Cretaceous continental magmatic arc of Northern Chile. PhD Kingston University, p 401

  • Bookstrom AA (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72:1101–1130

    Google Scholar 

  • Bottinga Y, Javoy M (1973) Comments on oxygen isotope geothermometry. Earth Planet Sci Let 20:250–265

    Google Scholar 

  • Breiter K, Müller A, Leichmann J, Gabasová A (2005) Textural and chemical evolution of a fractionated granitic system: the Podlesí stock, Czech Republic. Lithos 80:323–345

    Google Scholar 

  • Brown M, Diaz F, Grocott J (1993) Displacement history of the Atacama Fault System 25°00'S-27°-00'S, Northern Chile. Geol Soc Amer Bull 105:1165–1174

    Google Scholar 

  • Calderón M, Massonne HJ, Hervé F, Theye T (2017) P–T–time evolution of the Mejillones metamorphic complex: insights into Late Triassic to Early Jurassic orogenic processes in northern Chile. Tectonophysics 717:383–398

    Google Scholar 

  • Canil D, Fellows SA (2017) Sulphide–sulphate stability and melting in subducted sediment and its role in arc mantle redox and chalcophile cycling in space and time. Earth Planet Sci Let 470:73–86

    Google Scholar 

  • Carroll MR, Rutherford MJ (1987) The stability of igneous anhydrite. Experimental results and implication for sulfur behavior in the 1982 El Chinchón trachyandesite and other evolved magmas. Jour Petrol 56:659–678

    Google Scholar 

  • Casquet C, Hervé F, Pankhurst RJ, Baldo E, Calderón M, Fanning CM, Rapela CW, Dahlquist J (2014) The Mejillonia suspect terrane (Northern Chile): Late Triassic fast burial and metamorphism of sediments in a magmatic arc environment extending into the Early Jurassic. Gondwana Res 25:1272–1286

    Google Scholar 

  • Cembrano J, Gonzalez G, Arancibia G, Ahumada I, Olivares V, Herrera V (2005) Fault zone development and strain partitioning in an extensional strike-slip duplex: a case study from the Mesozoic Atacama fault system, Northern Chile. Tectonophysics 400:105–125

    Google Scholar 

  • Charoy B, Noronha F (1996) Multistage growth of a rare element volatile-rich microgranite at Argemela (Portugal). Jour Petrol 37:73–94

    Google Scholar 

  • Charrier R, Muñoz N (1994) Jurassic Cretaceous palaeogeographic evolution of the Chilean Andes at 23°–24°S latitude and 34°–35°S latitude: a comparative analysis. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the Southern Central Andes. Springer, pp 233–242

  • Chen H, Clark AH, Kyser TK (2010) The Marcona magnetite deposit, Ica, south-central Peru: a product of hydrous, iron oxide-rich melts? Econ Geol 105:1441–1456

    Google Scholar 

  • Chiaradia M, Banks D, Cliff R, Marschik R, de Haller A (2006) Origin of fluids in iron oxide-copper-gold deposits: constraints from δ37Cl, 87S/86Sri and Cl/Br. Mineral Deposita 41:565–573

    Google Scholar 

  • Clark AH, Kontak DJ (2004) Fe-Ti-P oxide melts generated through magma mixing in the Antauta subvolcanic center, Peru: implications for the origin of nelsonite and iron oxide-dominated hydrothermal deposits. Econ Geol 99:377–395

    Google Scholar 

  • Cruden A, Carlos A, Davis D, Grocott J (2004) Timescales and mechanisms of batholith construction, Coastal Cordillera, Northern Chile, from precise U-Pb zircon ages and regional ceochronological data. AGU Fall Meeting Abstracts

  • Dallmeyer, RD, Brown M, Grocott J, Taylor GK, Treloar PJ (1996) Mesozoic magmatic and tectonic events within the Andean plate boundary zone, 26°-27°30'S, North Chile: constraints from 40Ar/39Ar mineral ages. J Geol 104:19–40

  • Dalziel IWD, Grunow AM, Storey BC, Garrett SW, Herrod LDB, Pankhurst RJ (1987) Extensional tectonics and the fragmentation of Gondwanaland. Geological Society, London, Spec Publ 28:433–441

    Google Scholar 

  • Davidson J, Mpodozis C (1991) Regional geologic setting of epithermal gold deposits, Chile. Econ Geol 86:1174–1186

    Google Scholar 

  • Debret B, Sverjensky DA (2017) Highly oxidising fluids generated during serpentinite breakdown in subduction zones. Sci Rep 7:10351

    Google Scholar 

  • Dilles JH, Farner GL, Field CW (1995) Sodium-calcium alteration by non-magmatic saline fluids in porphyry copper deposits: results from Yerington, Nevada In: Thompson JFH (ed) Magmas, fluids and ore deposits. Miner Assoc Canada Short Course, pp 309-338

  • Driesner T, Heinrich CA (2007) The system H2O-NaCl. Part I. Correlation formulae for phase relations in temperature-pressure-composition space from 0 to 1000°C, 0 to 5000 bar and 0 to 1 XNaCl. Geochim Cosmochim Acta 71:4880–4901

    Google Scholar 

  • Dymek RF, Owens BE (2001) Petrogenesis of apatite-rich rocks (nelsonites and oxide-apatite gabbronorites) associated with mafic anorthosites. Econ Geol 96:797–815

    Google Scholar 

  • Espinoza S (1990) The Atacama-Coquimbo ferriferous belt, northern Chile. In: Fontboté L, Amstutz GC, Cardozo M, Cedillo E, Frutos J (eds) Spec Publ SGA. Springer Verlag, Berlin, pp 353–364

    Google Scholar 

  • Evans KA, Elburg MA, Kamenetsky VS (2012) Oxidation state of subarc mantle. Geology 40:783–786

    Google Scholar 

  • Evans KA, Reddy SM, Tomkins AG, Crossley RJ, Frost BR (2017) Effects of geodynamic setting on the redox state of fluids released by subducted mantle lithosphere. Lithos 278–281:26–42

    Google Scholar 

  • Fauré G (1986) Principles of isotope geology. Wiley & Sons, New York 589 pp

    Google Scholar 

  • Feigenson MD, Carr MJ (1986) Positively correlated Nd and Sr isotope ratios of lavas from the Central American volcanic front. Geology 14:79–82

    Google Scholar 

  • Franz G, Lucassen F, Kramer W, Trumbull R, Romer R, Wilke H, Viramonte JG, Becchio R, Siebel W (2006) Crustal evolution at the Central Andean continental margin: a geochemical record of crustal growth, recycling and destruction In: Oncken O, Chong G, Franz G, Giese P, Götze H-J, Ramos VA, Strecker MR, Wigger P (eds) The Andes - Active Subduction Orogeny. Frontiers in Earth Sciences. Springer, pp 45–64

  • Frietsch R (1978) On the magmatic origin of iron ores of the Kiruna type. Econ Geol 73:478–485

    Google Scholar 

  • Gelcich S, Davis DW, Spooner ETC (2005) Testing the apatite-magnetite geochronometer: U-Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite-apatite tabular bodies and IOCG mineralization in Northern Chile. Geochim Cosmochim Acta 69:3367–3384

    Google Scholar 

  • Graham CM, Harmon RS, Sheppard SMF (1984) Experimental hydrogen isotope studies: hydrogen isotope exchange between amphibole and water. Am Mineral 69:128–138

    Google Scholar 

  • Grocke SB, Cottrell E, de Silva S, Kelley KA (2016) The role of crustal and eruptive processes versus source variations in controlling the oxidation state of iron in Central Andean magmas. Earth Planet Sci Let 440:92–104

    Google Scholar 

  • Grocott J, Taylor GK (2002) Magmatic arc fault systems, deformation partitioning and emplacement of granitic complexes in the Coastal Cordillera, north Chilean Andes (25°30'S to 27°00'S). Jour Geol Soc 159:425–442

    Google Scholar 

  • Grocott J, Wilson J (1997) Ascent and emplacement of granitic plutonic complexes in subduction-related extensional environments. Mineralogical Society Series 8:173–195

    Google Scholar 

  • Grocott J, Brown M, Dallmeyer RD, Taylor GK, Treloar PJ (1994) Mechanisms of continental growth in extensional arcs: an example from the Andean plate-boundary zone. Geology 22:391–394

    Google Scholar 

  • Hanchar JM, Tornos F (2019) What can the chemistry of magnetite tell us about the origin of magnetite-apatite deposits? Abstracts SEG Conference. Santiago de Chile

  • Heidarian H, Lentz DR, Alirezaei S, McFarlane CRM, Peighambari S (2018) Multiple stage ore formation in the Chadormalu iron deposit, Bafq Metallogenic Province, Central Iran: evidence from BSE imaging and apatite EPMA and LA-ICP-MS U-Pb geochronology. Minerals 8:87

    Google Scholar 

  • Hennings SK, Wagner T, Ulmer P, Heinrich CA (2017) Fluid evolution of the Monte Mattoni mafic complex, Adamello batholith, northern Italy: insights from fluid inclusion analysis and thermodynamic modeling. Jour Petrol 58:1645–1670

    Google Scholar 

  • Henriquez F, Martin RF (1978) Crystal growth textures in magnetite flows and feeder dykes, El Laco, Chile. Canad Mineral 16:581–589

    Google Scholar 

  • Henriquez F, Dobbs M, Nystrom J (1991) Caracterización geoquímica de magnetita, apatita, y anfibolita del yacimiento de hierro de Carmen, Región de Atacama, Chile. Abstracts VI Congreso Geologico Chileno. Viña del Mar, pp 159–161

  • Henriquez F, Dobbs FM, Espinoza S, Nystrom J, Travisany V, Vivallo W (1994) Origin of chilean magnetite-apatite ore deposits. Abstracts VII Congreso Geologico Chileno. Concepcion, pp 822–824

  • Henriquez F, Naslund HR, Nyrström JO, Naranjo JA (2004) Igneous textures in magnetite eruptive products. Abstracts IAVCEI 2004. Pucon Chile

  • Herve F (1987) Movimiento sinistral en el Cretácico inferior de la Zona de Falla de Atacama al norte de Paposo (24°S), Chile. Rev Geol Chile 31:31–36

    Google Scholar 

  • Hitzman MW (2000) Iron oxide-Cu-Au deposits. What, where, when and why En: Porter, TM (ed), Hydrothermal iron oxide copper-gold & related deposits: a global perspective, Australian Mineral Foundation, Adelaide, 9–25

  • Hitzman MW, Oreskes N, Einaudi MT (1992) Geological characteristics and tectonic setting of Proterozoic iron-oxide (Cu-U-Au-REE) deposits. Precambrian Res 58:241–287

    Google Scholar 

  • Hofstra AH, Meighan CJ, Song X, Samson I, Marsh EE, Lowers HA, Emsbo P, Hunt AG (2016) Mineral thermometry and fluid inclusion studies of the pea ridge iron oxide-apatite–rare earth element deposit, Mesoproterozoic St. Francois Mountains Terrane, Southeast Missouri, USA. Economic Geology 111:1985–2016

    Google Scholar 

  • Hoogewerff JA, Van Bergen MJ, Vroon PZ, Hertogen J, Wordel R, Sneyers A, Nasution A, Varekamp JC, Moens HLE, Mouchel D (1997) U-series, Sr-Nd-Pb isotope and trace-element systematics across an active island arc-continent collision zone: Implications for element transfer at the slab-wedge interface. Geochim Cosmochim Acta 61:1057–1072

    Google Scholar 

  • Hou T, Charlier B, Holtz F, Veksler I, Zhang Z, Thomas R, Namur O (2018) Immiscible hydrous Fe–Ca–P melt and the origin of iron oxide-apatite ore deposits. Nature Comm 9:1415

    Google Scholar 

  • Hurai V, Simon K, Wiechert U, Hoefs J, Konečný P, Huraiová M, Pironon J, Lipka J (1998) Immiscible separation of metalliferous Fe/ Ti-oxide melts from fractionating alkali basalt: P-T-fO2 conditions and two-liquid elemental partitioning. Contrib Mineral Petrol 133:12–29

    Google Scholar 

  • Hyppolito T, Juliani C, García-Casco A, Meira VT, Bustamante A, Hervé F (2014) The nature of the Palaeozoic oceanic basin at the southwestern margin of Gondwana and implications for the origin of the Chilenia terrane (Pichilemu region, Central Chile). Intern Geol Rev 56:1097–1121

    Google Scholar 

  • Jonsson E, Troll VR, Högdahl K, Harris C, Weis F, Nilsson KP, Skelton A (2013) Magmatic origin of giant ‘Kiruna-type’ apatite-iron-oxide ores in Central Sweden. Sci Rep 3:1644

    Google Scholar 

  • Jugo PJ, Luth RW, Richards JP (2005) An experimental study of the sulfur content in basaltic melts saturated with immiscible sulfide or sulfate liquids at 1300°C and 1.0 Gpa. Jour Petrol 46:783–798

    Google Scholar 

  • Kamenetsky VS, Charlier B, Zhitova L, Sharygin V, Davidson P, Feig S (2013) Magma chamber–scale liquid immiscibility in the Siberian traps represented by melt pools in native iron. Geology 41:1091–1094

    Google Scholar 

  • Kay SM, Mpodozis C (2002) Central Andean ore deposits linked to evolving shallow subduction systems and thickening crust. GSA Today 11: 4–9

  • Keller T, Hanchar JM, Tornos F, Suckale J (2018) Formation of the El Laco magmatic magnetite deposits by Fe-Si melt immiscibility and bubbly suspension flow along volcano tectonic faults. Fall Meeting American Geophysical Union V43H-0231, Washington

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325:605–607

    Google Scholar 

  • Knipping JL, Bilenker LD, Simon AC, Reich M, Barra F, Deditius AP, Lundstrom C, Bindeman I, Munizaga R (2015) Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions. Geology 43:591–594

    Google Scholar 

  • Koděra P, Heinrich CA, Wälle M, Lexa J (2014) Magmatic salt melt and vapor: extreme fluids sforming porphyry gold deposits in shallow subvolcanic settings. Geology 42:495–498

    Google Scholar 

  • Kojima S, Trista-Aguilera D, Hayashi K (2009) Genetic aspects of the Manto-type copper deposits based on geochemical studies of North Chilean deposits. Resour Geol 59:87–98

    Google Scholar 

  • Krasnova N, Petrov T, Balaganskaya E, Garcia D, Moutte D, Zaitsev A, Wall F, Wall F, Zaitsev A (2004) Introduction to phoscorites: occurrence, composition, nomenclature and petrogenesis. In: Wall F, Zaitev AN (eds) Phoscorites and carbonatites from mantle to mine: the key example of the Kola Alkaline Province. The Mineralogical Society of Great Britain and Ireland, London, pp 45–74

    Google Scholar 

  • Lehmann B (1990) Metallogeny of tin. Springer Verlag, Berlin 212 pp

    Google Scholar 

  • Lester GW, Kyser TK, Clark AH (2013) Oxygen isotope partitioning between immiscible silicate melts with H2O, P and S. Geochim Cosmochim Acta 109:306–311

    Google Scholar 

  • Levresse G, Tornos F, Velasco F, Corona-Esquivel R (2017) New insights on the formation of magnetite-apatite deposits: the Artillero magnetite prospect (Mexico) proceed. 14th Biennial SGA Meeting, pp. 867-871

  • Lindsley DH, Epler N (2017) Do Fe-Ti-oxide magmas exist? Probably not! Am Mineral 102:2157–2169

    Google Scholar 

  • Lledó HL (2005) Experimental studies on the origin of iron deposits; and mineralization of Sierra La Bandera, Chile. PhD Thesis, SUNY-Binghamton, New York, pp 282

  • Lledo HL, Jenkins DM (2008) Experimental investigation of the upper thermal stability of Mg-rich actinolite; implications for Kiruna-type iron deposits. Jour Petrol 49:225–238

    Google Scholar 

  • Loewy SL, Connelly JN, Dalziel IW (2004) An orphaned basement block: the Arequipa-Antofalla basement of the central Andean margin of South America. Geol Soc America Bull 116:171–187

    Google Scholar 

  • London D (2014) A petrologic assessment of internal zonation in granitic pegmatites. Lithos 184–187:74–104

    Google Scholar 

  • López C, Riquelme R, Martínez F, Sanchez C, Mestre A (2017) Zircon U-Pb geochronology of the mesozoic to lower Cenozoic rocks of the Coastal Cordillera in the Antofagasta region (22°30′-23°00′ S): insights to the Andean tectono-magmatic evolution. Jour South Amer Earth Sci 87:113–138

    Google Scholar 

  • Lucassen F, Becchio R, Harmon R, Kasemann S, Franz G, Trumbull R, Wilke H-G, Romer RL, Dulski P (2001) Composition and density model of the continental crust at an active continental margin—the Central Andes between 21° and 27°S. Tectonophysics 341:195–223

    Google Scholar 

  • Lucassen F, Kramer W, Bartsch V, Wilke H-G, Franz G, Romer RL, Dulski P (2006) Nd, Pb, and Sr isotope composition of juvenile magmatism in the Mesozoic large magmatic province of northern Chile (18-27 degrees S): indications for a uniform subarc mantle. Contrib Miner Petrol 152:571–589

    Google Scholar 

  • Macfarlane AW, Marcet P, Lehuray AP, Petersen U (1990) Lead isotope province of the Central Andes inferred from ores and crustal rocks. Econ Geol 85:1857–1880

    Google Scholar 

  • Manning DAC, Hill PI, Howe JH (1996) Primary lithological variation in the kaolinized St Austell granite, Cornwall, England. Jour Geol Soc 153:827–838

    Google Scholar 

  • Mark G, Oliver NHS, Williams PJ (2006) Mineralogical and chemical evolution of the Ernest Henry Fe oxide-Cu-Au ore system, Cloncurry district, Northwest Queensland, Australia. Mineral Deposita 40:769–801

    Google Scholar 

  • Marschik R, Fontbote, L. (1996) Copper-(iron) mineralization and superposition of alteration events in the Punta del Cobre belt, Northern Chile. In: Andean copper deposits: new discoveries, mineralization, styles and metallogeny. SEG Special Publ 5, Camus F et al. (eds), 171-190

  • Marschik R, Fontboté L (2001a) The Punta del Cobre formation, Punta del Cobre-Candelaria area, Northern Chile. Jour South Amer Earth Sci 14:401–433

  • Marschik R, Fontbote L (2001b) The Candelaria-Punta del Cobre iron oxide Cu-Au(-Zn-Ag) deposits, Chile. Econ Geol 96:1799–1828

  • Marschik R, Sollner F (2006) Early Cretaceous U-Pb zircon ages for the Copiapo plutonic complex and implications for the IOCG mineralization at Candelaria, Atacama region, Chile. Mineral Deposita 41:785–801

    Google Scholar 

  • Marschik R, Singer BS, Munizaga F, Tassinari C, Moritz R, Fontbote L (1997) Age of the Cu(-Fe)-Au mineralization and thermal evolution of the Punta del Cobre district, Chile. Mineral Deposita 32:531–546

    Google Scholar 

  • Marschik R, Fontignie D, Chiaradia M, Voldet P (2003) Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30'S), Chile. Jour South Amer Earth Sci 16:281–398

    Google Scholar 

  • Marschik R, Akker B, Rieger AA, Chiaradia M, Spangenberg JE (2011) The Cerro Negro Norte magnetite(−apatite) deposit, Northern Chile: sulphur, lead, and strontium isotope characteristics In: Williams PJ et al (eds) Proceedings Tenth Biennial SGA Meeting. Townsville, pp 640–643

  • Mathur R, Marschik R, Ruiz J, Munizaga F, Leveille RA, Martin W (2002) Age of mineralization of the Candelaria Fe oxide Cu-Au deposit and the origin of the Chilean Iron belt, based on Re-OS isotopes. Econ Geol 97:59–71

    Google Scholar 

  • McArthur JM, Howarth R, Bailey T (2001) Strontium isotope stratigraphy: LOWESS version 3: best fit to the marine Sr-isotope curve for 0–509 Ma and accompanying look-up table for deriving numerical age. J Geol 109:155–170

    Google Scholar 

  • McNutt RH, Crocket JH, Clark AH, Caelles JC, Farrar E, Haynes SJ, Zentilli M (1975) Initial 87Sr/86Sr ratios of plutonic and volcanic rocks of the Central Andes between latitudes 26° and 29° south. Earth Planet Sci Let 27:305–313

    Google Scholar 

  • Menard JJ (1995) Relationship between altered pyroxene diorite and the magnetite mineralization in the Chilean iron belt, with emphasis on the El Algarrobo iron deposits (Atacama region, Chile). Mineral Deposita 30:268–274

    Google Scholar 

  • Miller LD, Goldfarb RJ, Gehrels GE, Snee LW (1994) Genetic links among fluid cycling, vein formation, regional deformation, and plutonism in the Juneau gold belt, southeastern Alaska. Geology 22:293–206

    Google Scholar 

  • Mpodozis C, Tomlinson AJ, Cornejo P (1994) Acerca del control estructural de intrusivos eocenos y porfidos cupriferos en la región de Potrerrillos-El Salvador. Abstracts VII Congreso Geologico Chileno. Concepcion, pp 1596–1600

  • Mpodozis C, Cornejo P, Mora R (2015) Evolving copper mineralization styles linked to the changing Jurassic-Early Cretaceous tectonic regime along the Coastal Range of Northern Chile (Antofagasta-Tocopilla region). Abstracts Congreso Geologico Chileno. Concepcion, Chile, pp 367

  • Mungall J, Long K, Brenan J, Smythe D, Naslund H (2018) Immiscible shoshonitic and Fe-P-oxide melts preserved in unconsolidated tephra at El Laco volcano, Chile. Geology 46:255–258

    Google Scholar 

  • Munizaga R, Lagos M (2015) Antecedentes geologicos del yacimiento de magnetita-apatito Los Colorados, provincia del Huasco, Tercera Region de Atacama, Chile. Abstracts XIV Congreso Geológico Chileno, La Serena, pp 102–105

  • Munizaga F, Huete C, Hervé F (1985) Geocronología K-Ar y razones iniciales 87Sr/86Sr de la Franja Pacifica de desarrollos hidrothermales. Abstracts Congreso Geológico Chileno. Antofagasta, pp 357–379

  • Nakamura H, Iwamori H, Nakagawa M, Shibata T, Kimura J-I, Miyazaki T, Chang Q, Vaglarov BS, Takahashi T, Hirahara Y (2019) Geochemical mapping of slab-derived fluid and source mantle along Japan arcs. Gondwana Res 70:36–49

    Google Scholar 

  • Naslund HR, Henriquez F, Nystrom JO, Vivallo W, Dobbs FM (2002) Magmatic iron ores and associated mineralisation; examples from the Chilean High Andes and Coastal Cordillera. In: Porter TM (ed) Hydrothermal iron oxide copper-gold & related deposits: a global perspective, vol 2. PGC Publishing, Adelaide, pp 207–226

    Google Scholar 

  • Naslund HR, Mungall JE, Henriquez F, Nyström JO, Lledó H, Lester GW, Aguirre R (2009) Melt inclusions in silicate lavas and iron-oxide tephra of the El Laco vocano, Chile. Abstracts XII Congreso Geológico Chileno, Santiago

    Google Scholar 

  • Nold JL, Dudley MA, Davidson P (2014) The Southeast Missouri (USA) Proterozoic iron metallogenic province types of deposits and genetic relationships to magnetite-apatite and iron oxide-copper-gold deposits. Ore Geol Rev 57:154–171

    Google Scholar 

  • Nyström JO, Henriquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Google Scholar 

  • Nyström JO, Billström K, Henríquez F, Fallick AE, Naslund HR (2008) Oxygen isotope composition of magnetite in iron ores of the Kiruna type in Chile and Sweden. GFF 130:177–188

    Google Scholar 

  • Ohmoto H (1986) Stable isotope geochemistry of ore deposits. Rev Mineral 16:491–555

    Google Scholar 

  • Palma G, Barra F, Reich M, Valencia V, Simon AC, Vervoort J, Leisen M, Romero R (2019) Halogens, trace element concentrations, and Sr-Nd isotopes in apatite from iron oxide-apatite (IOA) deposits in the Chilean iron belt: evidence for magmatic and hydrothermal stages of mineralization. Geochim Cosmochim Acta (in press)

  • Parada MA, Nÿstrom JO, Levi B (1999) Multiple sources for the coastal batholith of Central Chile (31–34°): geochemical and Sr–Nd isotopic evidence and tectonic implications. Lithos 46:505–521

    Google Scholar 

  • Parada M, López-Escobar L, Oliveros V, Fuentes F, Morata D, Calderón M, Aguirre L, Féraud G, Espinoza F, Moreno H (2007) Andean magmatism. In: Moreno T, Gibbons W (eds) The Geology of Chile. Geol Soc, London, pp 115–146

    Google Scholar 

  • Parak T (1991) Volcanic sedimentary rock related metallogenesis in the Kiruna Skellefte belt of Northern Sweden In: Hutchinson RW, Grauch RI (eds) Historical perspectives of genetic concepts and case histories of famous discoveries, Economic Geology Monograph 8, SEG, pp 20–50

  • Philpotts AR (1967) Origin of certain iron-titanium oxide and apatite rocks. Econ Geol 62:303–315

    Google Scholar 

  • Raab AK (2001) Geology of the Cerro Negro Norte Fe-oxide (Cu-Au) district, Coastal Cordillera, Northern Chile. Ph. D Thesis, University of Oregon, pp 296

  • Ramos V, Aleman A (2000) Tectonic evolution of the Andes in: Cordani UG, Milani EJ, Thomaz Filho A, Campos DA (eds) Tectonic evolution of South America. Rio de Janeiro, pp 635–685

  • Ramos V, Jordan T, Allmendinger RW, Mpodozis C, Kay SM, Cortés J, Palma M (1986) Paleozoic terranes of the Central Argentine-Chilean Andes. Tectonics 5:855–880

    Google Scholar 

  • Rech JA, Quade J, Hart WS (2003) Isotopic evidence for the source of Ca and S in soil gypsum, anhydrite and calcite in the Atacama Desert, Chile. Geochim Cosmochim Acta 67:575–586

    Google Scholar 

  • Rhodes AL, Oreskes N (1999) Oxygen isotope composition of magnetite deposits at El Laco, Chile: evidence of formation from isotopically heavy fluids In: Skinner BJ (ed) Econ Geol Spec Publ 7: Geology and Ore Deposits of the Central Andes. pp 333–351

  • Richards JP (2011) Magmatic to hydrothermal metal fluxes in convergent and collided margins. Ore Geol Revs 40:1–26

    Google Scholar 

  • Richards JP, López GP, Zhu J-J, Creaser RA, Locock AJ, Mumin HA (2017) Contrasting tectonic settings and sulfur contents of magmas associated with cretaceous porphyry Cu ± Mo ± Au and intrusion-related iron oxide Cu-Au deposits in Northern Chile. Econ Geol 112:295–318

    Google Scholar 

  • Rieger AA, Marschik R, Diaz M (2012) The evolution of the hydrothermal IOCG system in the Mantoverde district, northern Chile: new evidence from microthermometry and stable isotope geochemistry. Mineral Deposita 47:359–369

    Google Scholar 

  • Roedder E (1979) Silicate liquid immiscibility in magmas In: Jr YHS (ed) The evolution of the igneous rocks. Fiftieth Ann Persp. Princeton University Press, Princeton, pp 15–57

  • Roedder E, Weiblen PW (1971) Petrology of silicate melt inclusions, Apollo 11 and Apollo 12 and terrestrial equivalents. Proc 2nd Lunar Science Conference. pp 507-528

  • Rogers G, Hawkesworth CJ (1989) A geochemical traverse across the North Chilean Andes: evidence for crust generation from the mantle wedge. Earth Planet Sci Let 91:271–285

    Google Scholar 

  • Rojas PA, Barra F, Reich M, Deditius A, Simon A, Uribe F, Romero R, Rojo M (2018) A genetic link between magnetite mineralization and diorite intrusion at the El Romeral iron oxide-apatite deposit, northern Chile. Mineral Deposita 53:947–966

    Google Scholar 

  • Rossel P, Oliveros V, Ducea MN, Charrier R, Scaillet S, Retamal L, Figueroa O (2013) The Early Andean subduction system as an analog to island arcs: evidence from across-arc geochemical variations in northern Chile. Lithos 179:211–230

    Google Scholar 

  • Rossel P, Oliveros V, Ducea MN, Hernandez L (2015) Across and along arc geochemical variations in altered volcanic rocks: evidence from mineral chemistry of Jurassic lavas in northern Chile, and tectonic implications. Lithos 239:97–113

    Google Scholar 

  • Roulleau E, Tardani D, Vlastelic I, Vinet N, Sanchez J, Sano Y, Takahata N (2018a) Multi-element isotopic evolution of magmatic rocks from Caviahue-Copahue volcanic complex (Chile-Argentina): involvement of mature slab recycled materials. Chem Geol 476:370–388

    Google Scholar 

  • Roulleau E, Tardani D, Vlastelic I, Vinet N, Sanchez J, Sano Y, Takahata N (2018b) Multi-element isotopic evolution of magmatic rocks from Caviahue-Copahue volcanic complex (Chile-Argentina): involvement of mature slab recycled materials. Chem Geol 476:370–388

    Google Scholar 

  • Sanderson DJ, Roberts S, McGowan A, Gumiel P (1991) Hercynian transpressional tectonics at the southern margin of the central Iberian zone, west Spain. Jour Geol Soc London 148:893–898

    Google Scholar 

  • Scheuber E, Andriessen PAM (1990) The kinematic and geodynamic significance of the Atacama Fault Zone, Northern Chile. Jour Struct Geol 12:243–257

    Google Scholar 

  • Scheuber E, Gonzalez G (1999) Tectonics of the Jurassic-Early Cretaceous magmatic arc of the north Chilean Coastal Cordillera (22°–26° S): a story of crustal deformation along a convergent plate boundary. Tectonics 18:895–910

    Google Scholar 

  • Scott JM, Smith SAF, Tarling MS, le Roux PJ, Harris C, Hoffmann JE, Scherzer S, Tulley CJ (2019) Element and Sr–O isotope redistribution across a plate boundary-scale crustal serpentinite mélange shear zone, and implications for the slab-mantle interface. Earth Planet Sci Let 522:198–209

    Google Scholar 

  • Seedorff E, Dilles JH, Proffett JM, Einaudi MT, Zurcher L, Stavast WJA, Johnson DA, Barton MD (2005) Porphyry deposits: characteristics and origin of hypogene features In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology - one hundredth ann Volume. SEG pp 251–299

  • SERNAGEOMIN (2003) Mapa Geológico de Chile digital version. Servicio Nacional de Geología y Minería, Publicación Geológica Digital, No. 4 CD-R

  • Shannon JR, Walker BM, Carten RB, Geraghty EP (1982) Unidirectional solidification textures and their significance in determining relative ages of intrusions at the Henderson mine, Colorado. Geology 10:293–297

    Google Scholar 

  • Sheppard SMF (1986) Characterization and isotopic variations in natural waters. Rev Mineral Geochem 16:165–184

    Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper-gold deposits: an Andean view. Mineral Deposita 38:787–812

    Google Scholar 

  • Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105:3–41

    Google Scholar 

  • Sillitoe RH, Burrows DR (2002) New field evidence on the origin on the El Laco magnetite deposit, Northern Chile. Econ Geol 97:1101–1109

    Google Scholar 

  • Sillitoe RH, Perelló J (2005) Andean Copper Province: tectonomagmatic settings, deposit types, metallogeny, exploration, and discovery. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Economic geology - one hundredth anniversary volume. SEG, Littleton, pp 845–890

    Google Scholar 

  • Simon AC, Knipping J, Reich M, Barra F, Deditius AP, Bilenker L, Childress T (2018) Kiruna-Type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) deposits form by a combination of igneous and magmatic-hydrothermal processes: evidence from the Chilean Iron Belt SEG Special Publications. pp 89–114

  • Stracke A, Hofmann AW, Hart SR (2005) FOZO, HIMU, and the rest of the mantle zoo. Geochem Geophys Geosyst 6

  • Taylor GK, Grocott J, Popec A, Randall DE (1998) Mesozoic fault systems, deformation and fault block rotation in the Andean forearc: a crustal scale strike-slip duplex in the Coastal Cordillera of northern Chile. Tectonophysics 229:93–109

    Google Scholar 

  • Torab FM, Lehmann B (2007) Magnetite-apatite deposits of the Bafq district, Central Iran: apatite geochemistry and monazite geochronology. Miner Mag 71:347–366

    Google Scholar 

  • Tornos F (2011) Magnetite-apatite and IOCG deposits formed by magmatic-hydrothermal evolution of complex calc-alkaline melts In: Barra F, Reich M, Campos E, Tornos F (eds) SGA Conference Proceedings, Antofagasta, Chile, pp 26–28

  • Tornos F, Casquet C, Relvas J, Barriga F, Saez R (2002) The relationship between ore deposits and oblique tectonics: the SW Iberian Variscan Belt In: Blundell D, Neubauer, F., von Quadt, A. (ed) The timing and location of major ore deposits: an evolving orogen. Geol Soc London Spec Publ pp 179–198

  • Tornos F, Velasco F, Barra F, Morata D (2010) The Tropezon Cu-Mo-(Au) deposit, Northern Chile: the missing link between IOCG and porphyry copper systems? Mineral Deposita 45:313–321

    Google Scholar 

  • Tornos F, Velasco F, Hanchar JM (2016) Iron-rich melts, magmatic magnetite and superheated magmatic-hydrothermal systems: the El Laco deposit, Chile. Geology 44:427–430

    Google Scholar 

  • Tornos F, Hanchar JM, Velasco F, Muñizaga R, Levresse G (2017a) The roots and tops of magnetite-apatite mineralization: evolving magmatic-hydrothermal systems. Proceedings 14th SGA Biennial Meeting. Quebec City, pp 831-834

  • Tornos F, Velasco F, Hanchar JM (2017b) The magmatic to magmatic-hydrothermal evolution of the El Laco deposit, Chile, and its implications for the genesis of magnetite-apatite deposits. Econ Geol 112:1595–1628

    Google Scholar 

  • Tosdal RM, Nutt CJ (1998) Formation of sedimentary rock-hosted (Carlin-type) Au deposit of the Carlin Trend along an Eocene accomodation zone. Geol Soc America Abs Programs:30

  • Travisany V, Henriquez F, Nystroem JO (1995) Magnetite lava flows in the Pleito-Melon District of the Chilean iron belt. Econ Geol 90:438–444

    Google Scholar 

  • Treloar PJ, Colley H (1996) Variations in F and Cl contents in apatites from magnetite-apatite ores in northern Chile, and their ore-genetic implications. Min Mag 60:285–301

    Google Scholar 

  • Troll VR, Weis FA, Jonsson E, Andersson UB, Majidi SA, Högdahl K, Harris C, Millet M-A, Chinnasamy SS, Kooijman E, Nilsson KP (2019) Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores. Nature Comm 10:1712

    Google Scholar 

  • Valley JW (2001) Stable isotope thermometry at high temperatures. Rev Mineral Geochem 43:365–413

    Google Scholar 

  • Valley JW, Taylor, H. P., O'Neil, O. (1986) Stable isotopes in high temperature geological processes. Rev Mineral Geochem, 563 pp.

  • Veksler IV, Dorfman AM, Rhede D, Wirth R, Borisov AA, Dingwell DB (2008) Liquid unmixing kinetics and the extent of immiscibility in the system K2O–CaO–FeO–Al2O3–SiO2. Chem Geol 256:119–130

    Google Scholar 

  • Velasco F, Tornos F (2009) Pegmatite-like magnetite-apatite deposits of northern Chile: a place in the evolution of immiscible iron oxide melts? In: Williams P.J. et al. (ed) Proceedings 10th SGA Meeting, Townsville, pp 665–667

  • Velasco F, Tornos F, Hanchar JM (2016) Immiscible iron- and silica-rich melts and magnetite geochemistry at the El Laco volcano (northern Chile): evidence for a magmatic origin for the magnetite deposits. Ore Geol Rev 79:346–366

    Google Scholar 

  • Veloso E, Cembrano J, Arancibia G, Heuser G, Neira S, Siña A, Garrido I, Vermeesch P, Selby D (2017) Tectono-metallogenetic evolution of the Fe–Cu deposit of Dominga, northern Chile. Mineral Deposita 52:595–620

    Google Scholar 

  • Vivallo W, Henriquez F (1998) Génesis común de los yacimientos estratoligados y vetiformes de cobre del Jurásico Medio a Superior en la Cordillera de la Costa, Región de Antofagasta, Chile. Rev Geol Chile 25:199–228

    Google Scholar 

  • Vivallo W, Espinoza S, Henriquez F (1995) Metasomatismo y alteración hidrotermal en el distrito ferrífero Cerro Negro Norte, Copiapó, Chile. Andean Geol 22:75–88

    Google Scholar 

  • Vivallo W, Díaz A, Gelcich S, Lledó H (2000) Estilos y tipos de mineralización del Jurásico y Cretácico Inferior en la Cordillera de la Costa de la región de Copiapó, Chile. Proceedings IX Congreso Geológico Chileno. Puerto Varas, pp 179–182

  • Weis P, Driesner T, Coumou D, Geiger S (2014) Hydrothermal, multiphase convection of H2O-NaCl fluids from ambient to magmatic temperatures: a new numerical scheme and benchmarks for code comparison. Geofluids 14:347–371

  • White WM, Hofmann AW (1982) Sr and Nd isotope geochemistry of oceanic basalts and mantle evolution. Nature 296:821

    Google Scholar 

  • Wigger PJ, Schmitz M, Araneda M, Asch G, Baldzuhn S, Giese P, Heinsohn WD, Martinez E, Ricaldi E, Rüwer P, Viramonte J (1994) Variation in the crustal structure of the southern Central Andes deduced from seismic refraction investigations. In: Reutter KJ, Scheuber E, Wigger PJ (eds) Tectonics of the southern Central Andes. Springer-Verlag, Heildelberg, pp 23–48

    Google Scholar 

  • Williams P, Barton MD, Johnson DA, Fontboté L, Ad H, Mark G, Oliver NHS, Marschik R (2005) Iron oxide copper-gold deposits: geology, space-time distribution, and possible modes of origin. In: Hedenquist JW, Thompson JFH, Goldfarb RJ, Richards JP (eds) Econ Geol - one hundredth anniversary volume. SEG, Littleton, pp 371–406

    Google Scholar 

  • Wilson J, Grocott J (1999) The emplacement of the granitic Las Tazas complex, northern Chile: the relationship between local and regional strain. Jour Struct Geol 21:1513–1523

    Google Scholar 

  • Woodhead, JD, Johnson, RW (1993) Isotopic and trace-element profiles across the New Britain island arc, Papua New Guinea. Contrib Mineral Petrol 113:479–491

  • Zeng LP, Zhao XF, Li XC, Hu H, McFarlane C (2016) In situ elemental and isotopic analysis of fluorapatite from the Taocun magnetite-apatite deposit, eastern China: constraints on fluid metasomatism. Am Mineral 101:2468–2483

    Google Scholar 

  • Zentilli M (1974) Geological evolution and metallogenic relationships in the Andes of Northern Chile between 26° and 29° South. PhD Thesis. Queen’s University

  • Zheng YF (1993) Calculation of oxygen isotope fractionation in hydroxil-bearing silicates. Earth Planet Sci Lett 120:247–263

    Google Scholar 

  • Zheng YF (1995) Oxygen isotope fractionation in magnetites: structural effect and oxygen inheritance. Chem Geol 121:319–326

    Google Scholar 

  • Zhou T, Fan Y, Yuan F, Zhang L, Qian B, Ma L, Yang X (2013) Geology and geochronology of magnetite–apatite deposits in the Ning-Wu volcanic basin, eastern China. Jour Asian Earth Sci 66:90–107

    Google Scholar 

Download references

Acknowledgements

The ideas discussed here synthesize the field work carried in the Coastal Andes and are a contribution to the Spanish SEIDI projects CGL2014-55949R (FT and FV) and RTI2018-099157-A-I00 (FT), and an NSERC Discovery grant to JMH. We acknowledge Justo Esquivel (Montecristo) and the geologists of CAP Minería Mario Rojo, Cristian Astudillo (Cerro Negro Norte), Mario Lagos and Wilson Riquelme (Los Colorados) for their help and sharing their knowledge. We also thank numerous colleagues for their help and discussions during field work, including Mario Arrieta, Verónica Herrera, José Luis Jara, Gilles Levresse, Laura Mateo, Jean-Luc Pilote, Steve Piercey, Graham Layne, Noel White, and Taofa Zhou, or during later discussions, César Casquet, Constantino Mpodozis, and José María González. We also acknowledge the collaboration of the Compañía Minera del Pacífico and Minera Santa Fé for granting access to their mines and help with information and sampling. The isotope analyses were done at the Unidad de CAI Geocronología (Universidad Complutense de Madrid) and the Laboratorio de Análisis de Isótopos Estables (Universidad de Salamanca); we thank José Manuel Fuenlabrada, Clemente Recio, and Félix García for their help. Thanks are extended to Pedro Acosta-Góngora, Johannes Glodny, and Ryan Ickert for their thoughtful and insightful reviews and Peter Hollings for his editorial handling of the manuscript. This paper is dedicated to the memory of the co-author Dr. Carmen Galindo who passed away during the review process of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Tornos.

Additional information

Editorial handling: P. Hollings

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Carmen Galindo is deceased.

Electronic supplementary material

ESM 1

(PDF 161 kb)

ESM 2

(PDF 90 kb)

ESM 3

(PDF 66 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tornos, F., Hanchar, J.M., Munizaga, R. et al. The role of the subducting slab and melt crystallization in the formation of magnetite-(apatite) systems, Coastal Cordillera of Chile. Miner Deposita 56, 253–278 (2021). https://doi.org/10.1007/s00126-020-00959-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-020-00959-9

Keywords

Navigation