Skip to main content

Advertisement

Log in

Nickel isotopic variation in black shales from Bohemia, China, Canada, and Finland: a reconnaissance study

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

We present δ60Ni values for black shales, determined by double-spike MC-ICP-MS. The samples comprise Paleoproterozoic Talvivaara Ni–Zn–Co–Cu black shales from Finland, Neoproterozoic black shales from the Teplá-Barrandian Unit, Czech Republic, Early Cambrian Ni–Mo-rich black shales from the Yangtze Craton, and Devonian Ni–Zn–PGE black shales from Yukon, Canada. In addition, the sample set includes a black smoker sample from the Logatchev hydrothermal field, Mid-Atlantic Ridge. The δ60Ni values vary from − 0.84 ± 0.09 to + 0.62 ± 0.04‰ (2SD) with a median of − 0.10‰ (n = 28). Ni isotopic compositions were predominantly lighter than those of abiotic terrestrial and extraterrestrial samples (0.15 and 0.27‰), mantle (0.23‰, Gall et al. 2017), present-day seawater (1.44‰, Cameron and Vance 2014), dissolved Ni from riverine input (0.84‰, Cameron and Vance 2014), ferromanganese crusts (0.9–2.5‰, Gall et al. 2013), Devonian/Mississippian organic-rich marine sediments, lower Jurassic organic-rich marine sediments (0.2–2.5‰, average 0.92‰, n = 18, Porter et al. 2014), and euxinic sediments of the Black Sea (0.14–0.51‰, Vance et al. 2016). However, the range of δ60Ni values in our black shale samples was close to that of the weathering products of mafic/ultramafic rocks (ore and soil samples) ranging from − 0.60 to + 0.30‰ (Ratié et al. 2015; Spivak-Birndorf et al. 2018), Ni-sulfide ores hosted by Archean komatiites from Australia and Canada (− 0.10 to − 1.03‰, average − 0.70‰, n = 8, Gueguen et al. 2013), and Archean Ni-rich magmatic sulfides from Zimbabwe (− 0.28 to − 0.47‰, n = 6, Hoffman et al. 2014). Based on our observations and considering the extremely low contribution of direct biological uptake of Ni, and a dominant Ni residence in early Fe/Ni-sulfides, we suggest that our mostly light Ni isotopic compositions in metal-rich black shales result from sulfidization of organic matter and Ni removal into sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ackerman L, Pašava J, Šípková A, Martínková E, Haluzová E, Chrastný V (submitted) Copper, zinc, chromium and osmium isotopic compositions of the Teplá-Barrandian unit black shales and implications for the composition and oxygenation of the Neoproterozoic-Cambrian sea. Geochim Cosmochim Acta

  • Achterberg EP, Van den Berr CMG, Boussemart IM, Davison W (1997) Speciation and cycling of trace metals in Esthwaite Water: a productive English lake with seasonal deep-water anoxia. Geochim Cosmochim Acta 61:5233–5253

    Google Scholar 

  • Albarède F, Télouk P, Blichert-Toft J, Boyet M, Agranier A, Nelson B (2004) Precise and accurate isotopic measurements using multiple-collector ICPMS. Geochim Cosmochim Acta 68:2725–2744

    Google Scholar 

  • Al-Farawati R, Van den Berg CMG (1999) Metal–sulfide complexation in seawater. Mar Chem 63:331–352

    Google Scholar 

  • Böning P, Fröllje H, Beck M, Schnetger B, Brumsack HJ (2012) Underestimation of the authigenic fraction of Cu and Ni in organic-rich sediments. Mar Geol 323–325:24–28. https://doi.org/10.1016/j.margeo.2012.07.004

    Google Scholar 

  • Brumsack HJ (1989) Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geologische Rundschau 78:851–882. https://doi.org/10.1007/BF01829327

    Google Scholar 

  • Cameron V, Vance D, Archer C, House CH (2009) A biomarker based on the stable isotopes of nickel. Proc Natl Acad Sci U S A 106:10944–10948

    Google Scholar 

  • Cameron V, Vance D (2014) Heavy nickel isotope compositions in rivers and the oceans. Geochim Cosmochim Acta 128:195–211

    Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88

    Google Scholar 

  • Cao J, Hu K, Zhou J, Shi C, Bian L, Yao S (2013) Organic clots and their differential accumulation of Ni and Mo within early Cambrian black-shale-hosted polymetallic Ni-Mo deposits, Zunyi, South China. J Asian Earth Sci 62:531–536

    Google Scholar 

  • Chernonozhkin SM, Goderis S, Lobo L, Claeys P, Vanhaecke F (2015) Development of an isolation procedure and MC-ICP-MS measurement protocol for the study of stable isotope ratio variations of nickel. J Anal At Spectrometry 30:1518–1530

    Google Scholar 

  • Cháb J, Pelc Z (1968) Lithology of Upper Proterozoic in the NW limb of the Barrandian area. Krystalinikum 6:141

    Google Scholar 

  • Coveney RM, Glascock A (1989) A review of the origins of metal-rich Pennsylvanian black shales, central U.S.A., with an inferred role for basinal brines. Appl Geochem 4:347–367

    Google Scholar 

  • Coveney RM, Chen N (1991) Ni-Mo-PGEAu-rich ores in Chinese black shales and speculations on possible analogues in the United States. Mineral Deposita 26:83–88

    Google Scholar 

  • Coveney RM, Grauch RI, Murowchick JB (1994) Metals, phosphate and stone coal in the Proterozoic and Cambrian of China: the geologic setting of precious metal-bearing Ni-Mo ore beds. Soc Econ Geol Newsletter18:6–11

  • Coveney RM (2000) Metalliferous black shales and the role of organic matter with examples from China, Poland and the United States. In: Giordano TH, Kettler RM, Wood SA (eds) Ore genesis and exploration: the roles of organic matter. Rev Econ Geol, vol 9, pp 251–280

    Google Scholar 

  • Coveney RM, Pašava J (2004) Diverse connections between ores and organic matter. Ore Geol Rev 24:1–5

    Google Scholar 

  • Emsbo P, Hofstra AH, Johnson CA, Koenig A, Grauch R, Zhang KC, Hu RZ, Su WC, Pi DH (2005) Lower Cambrian metallogenesis of South China: interplay between diverse basinal hydrothermal fluids and marine chemistry. In Mao JW, Bierlein FP (eds) Mineral deposit research: meeting the global challenge. Berlin, Heidelberg, Springer-Verlag, v. 1, Chapter 2-10, p. 115–118

  • Fan D (1983) Polyelements in the Lower Cambrian black shale series in southern China. In: Augustithis SS (ed) The significance of trace metals in solving petrogenetic problems and controversies. Theophrastus Publications S.A, Athens, pp 447–474

    Google Scholar 

  • Fan D, Zhang T, Ye J, Pašava J, Kříbek B, Dobeš P, Vavřín I, Žák K (2004) Geochemistry and origin of tin-polymetallic sulfide deposits hosted by the Devonian black shale series near Dachang, Guangxi, China. Ore Geol Rev 24:103–120

    Google Scholar 

  • Fujii T, Moynier F, Dauphas N, Abe M (2011) Theoretical and experimental investigation of nickel isotopic fractionation in species relevant to modern and ancient oceans. Geochim Cosmochim Acta 75:469–482

    Google Scholar 

  • Fujii T, Moynier F, Blichert-Toft J, Albarède F (2014) Density functional theory estimation of isotope fractionation of Fe, Ni, Cu and Zn among species relevant to geochemical and biological environments. Geochim Cosmochim Acta 140:553–576

    Google Scholar 

  • Gaillardet J, Viers J, Dupre B (2003) Trace elements in river waters. In: Drever JI, Holland HD, Turekian KK (eds) Treatise on Geochemistry. Surface and ground water, weathering, and soils, vol. 5. Elsevier, New York, pp. 225–272

  • Gall L, Williams H, Siebert C, Halliday A (2012) Determination of mass-dependent variations in nickel isotope compositions using double spiking and MC-ICPMS. J Anal Atmos Spectrom 27:137–145

    Google Scholar 

  • Gall L, Williams HM, Siebert C, Halliday AN, Herrington RJ, Hein JR (2013) Nickel isotopic compositions of ferromanganese crusts and the constancy of deep ocean inputs and continental weathering effects over the Cenozoic. Earth Planet Sci Lett 375:148–155

    Google Scholar 

  • Gall L, Williams HM, Halliday AN, Kerr AC (2017) Nickel isotopic composition of the mantle. Geochim Cosmochim Acta 199:196–209

    Google Scholar 

  • Goodfellow W (2007) Base metal metallogeny of the Selwyn Basin, Canada, in mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Assoc Canada, Miner Depos Div Spec Publ 5:553–579

    Google Scholar 

  • Grauch RI, Huyck HLO (1990) Metalliferous black shales and related ore deposits—proceedings, 1989 United States Working Group Meeting, International Geological Correlation Program Project 254. U.S. Geological Survey Circular 1058:85

    Google Scholar 

  • Grauch RI, Murowchick JB, RMJr C, Chen N (1991) Extreme concentration of Mo, Ni, PGE and Au in anoxic marine basins, China and Canada. In: Pagel M, Leroy JL (eds) Source, transport and deposition of metals. Balkema, Rotterdam, pp 531–534

    Google Scholar 

  • Gueguen B, Rouxel O, Ponzevera E, Bekker A, Fouquet Y (2013) Nickel isotope variations in terrestrial silicate rocks and geological reference materials measured by MC-ICP-MS. Geostand Geoanal Res 37:297–317

    Google Scholar 

  • Gueguen B, Rouxel O, Rouget ML, Bollinger C, Ponzevera E, Germain Y, Fouquet Y (2016) Comparative geochemistry of four ferromanganese crusts from the Pacific Ocean and significance for the use of Ni isotopes as paleoceanographic tracers. Geochim Cosmochim Acta 189:214–235

    Google Scholar 

  • Hajná J, Žák J, Kachlík V (2014) Growth of accretionary wedges and pulsed ophiolitic mélange formation by successive subduction of trench-parallel volcanic elevations. Terra Nova 26:322–329

    Google Scholar 

  • Han SC, Hu K, Cao J, Pan J, Liu Y, Bian LZ, Shi CH (2014) Mineralogy of early Cambrian Ni-Mo polymetallic black shale at the Sancha Deposit, South China: implications for ore genesis. Resour Geol 65:1–12

    Google Scholar 

  • Han T, Zhu XQ, Li K, Jiang L, Zhao CH, Wang ZG (2015) Metal sources for the polymetallic Ni–Mo–PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation, South China. Ore Geol Rev 67:158–169

    Google Scholar 

  • Hatch JR, Leventhal JS (1992) Relationship between inferred redox potential of the depositional environment and geochemistry of the Upper Pennsylvanian (Missourian) Stark Shale Member of the Dennis Limestone, Wabaunsee County, Kansas, U.S.A. Chem Geol 99:65–82

    Google Scholar 

  • Hofmann A, Bekker A, Dirks P, Gueguen B (2014) Comparing orthomagmatic and hydrothermal mineralization models for komatiite-hosted nickel deposits in Zimbabwe using multiple sulfur, iron, and nickel isotope data. Mineral Deposita 49:75–100

    Google Scholar 

  • Holubec J (1995) Structure (the Teplá–Barrandian Zone). In: Dallmeyer RD, Franke W, Weber K (Eds.), Pre-Permian geology of central and eastern Europe. Springer, Berlin, Heidelberg, New York, pp. 392–397

  • Hulbert LJ, Gregoire CD, Paktunc D (1992) Sedimentary nickel, zinc, and platinum-group-element mineralization in Devonian black shales at the Nick property, Yukon, Canada: a new deposit type. Explor Min Geol 1:39–62

    Google Scholar 

  • Jacobs L, Emerson S (1982) Trace metal solubility in an anoxic fjord. Earth Planet Sci Letts 60:237–252

    Google Scholar 

  • Jiang GQ, Shi XY, Zhang SH, Wang Y, Xiao SH (2011) Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in South China. Gondwana Res 19:831–849

    Google Scholar 

  • Jiang SY, Chen YQ, Ling HF, Feng HZ, Ni P (2006) Trace- and rare-earth element geochemistry and Pb-Pb dating of black shales and intercalated Ni-Mo-PGE-Au sulfide ores in Lower Cambrian strata, Yangtze Platform, South China. Mineral Deposita 41:453–468

    Google Scholar 

  • Jiang SY, Yang JH, Ling HF, Chen YQ, Feng HZ, Zhao KD, Ni P (2007) Extreme enrichment of polymetallic Ni–Mo–PGE–Au in Lower Cambrian black shales of South China: an Os isotope and PGE geochemical investigation. Palaeogeogr Palaeoclimatol Palaeoecol 254:217–228

    Google Scholar 

  • Jones B, Manning DAC (1994) Comparison of geochemical indices used for the interpretation of palaeoredox conditions in ancient mudstones. Chem Geol 111:111–129

    Google Scholar 

  • Johnson SC, Large RR, Coveney RM, Kelley KD, Slack JF, Steadman JA, Gregory DD, Sack PJ, Meffre S (2017) Secular distribution of highly metalliferous black shales corresponds with peaks in past atmosphere oxygenation. Mineral Deposita 52:791–798

    Google Scholar 

  • Kao LS, Peacor DR, RMJr C, Zhao G, Dungey KE, Curtis MD, Penner-Hahn JE (2001) A C/MoS2 mixed-layer phase (MoSC) occurring in metalliferous black shales from southern China, and new data on jordisite. Am Mineral 86:852–861

    Google Scholar 

  • Kontinen A (2012) F029 Talvivaara Ni-Zn-Cu. In: Eilu P (ed) Mineral deposits and metallogeny of Fennoscandia. Geological Survey of Finland, Special Paper, vol 53, pp 276–280

    Google Scholar 

  • Kontinen A, Hanski E (2015) The Talvivaara black shale-hosted Ni-Zn-Cu-Co deposit in eastern Finland. In Maier W, Lahtinen R, O’Brien H (eds) Mineral deposits of Finland. Elsevier 557–612

  • Kříbek B, Sýkorová I, Pašava J, Machovič V (2007) Organic geochemistry and petrology of barren and Mo–Ni–PGE mineralized marine black shales of the Lower Cambrian Niutitang Unit (South China). Int J Coal Geol 72:240–256

    Google Scholar 

  • Kurzweil F, Drost K, Pašava J, Wille M, Taubald H, Schoeckle D, Schoenberg R (2015) Coupled sulfur, iron and molybdenum isotope data from black shales of the Teplá-Barrandian unit argue against deep ocean oxygenation during the Ediacaran. Geochim Cosmochim Acta 171:121–142

    Google Scholar 

  • Landing WM, Lewis BL (1991) Thermodynamic modelling of trace metal speciation in the Black Sea. In E Izdar, JW Murray (eds) Black Sea oceanography, pp. 125–160, NATO ASI Series, Berlin, Germany: Springer

  • Large RR, Halpin JA, Danyushevsky LV, Maslennikov VV, Bull SW, Long JA, Gregory DD, Lounejeva E, Lyons TW, Sack PJ, McGoldrick PJ, Calver CR (2014) Trace element content of sedimentary pyrite as a new proxy for deep-time ocean–atmosphere evolution. Earth Planet Sci Letts 389:209–220

    Google Scholar 

  • Leventhal J (1993) Metals in black shales. In: Engel MH, Macko SA (eds) Organic geochemistry: principles and applications. Plenum Press, New York, pp 581–607

    Google Scholar 

  • Lehmann B, Mao JW, Li SR, Zhang GD, Zeng MG (2003) Re-Os dating of polymetallic Ni-Mo-PGE-Au mineralization in Lower Cambrian black shales of South China and its geologic significance—a reply. Econ Geol 98:663–665

    Google Scholar 

  • Lehmann B, Nägler TF, Holland HD, Wille M, Mao J, Pan J, Dulski P (2007) Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology 35:403–406

    Google Scholar 

  • Lehmann B, Frei R, Xu L, Mao J (2016) Early Cambrian black shale-hosted Mo-Ni and V mineralization on the rifted margin of the Yangtze Platform, China: reconnaissance chromium isotope data and a refined metallogenic model. Econ Geol 111:89–103

    Google Scholar 

  • Li HY, Schoonmaker J (2003) Chemical composition and mineralogy of marine sediments. In: Treatise on geochemistry. Sediments, diagenesis, and sedimentary rocks, vol.7, pp., pp 1–35

    Google Scholar 

  • Little SH, Vance D, Lyons TW, McManus J (2015) Controls on trace metal authigenic enrichment in reducing sediments: insights from modern oxygen-deficient settings. Am J Sci 315:77–119

    Google Scholar 

  • Lott DA, RMJr C, Murowchick JB, Grauch RI (1999) Sedimentary exhalative nickel–molybdenum ores in South China. Econ Geol 94:1051–1066

    Google Scholar 

  • Loukola-Ruskeeniemi K (1991) Geochemical evidence for the hydrothermal origin of sulphur, base metals and gold in Proterozoic metamorphosed black shales, Kainuu and Outokumpu areas, Finland. Mineral Deposita 26:152–164

    Google Scholar 

  • Loukola-Ruskeeniemi K (1999) Origin of black shales and serpentinite-associated Cu-Zn-Co ores at Outokumpu in Finland. Econ Geol 94:1007–1028

    Google Scholar 

  • Loukola-Ruskeeniemi K (2011) Graphite- and sulphide-bearing schists in the Outokumpu R2500 drill core: comparison with the Ni-Cu-Co-Zn-Mn-rich black schists at Talvivaara, Finland. Geol Surv Finland Spec Pap 51:229–252

    Google Scholar 

  • Loukola-Ruskeeniemi K, Heino T (1996) Geochemistry and genesis of the black shale-hosted Ni-Cu-Zn deposit at Talvivaara, Finland. Econ Geol 91(1):80–110

    Google Scholar 

  • Loukola-Ruskeeniemi K, Lahtinen H (2013) Multiphase evolution in the black- shale-hosted Ni–Cu–Zn–Co deposit at Talvivaara, Finland. Ore Geol Rev 52:85–99

    Google Scholar 

  • Loukola-Ruskeeniemi K, Heino T, Talvitie J, Vanne J (1991) Base-metal-rich metamorphosed black shales associated with Proterozoic ophiolites in the Kainuu schist belt, Finland: a genetic link with the Outokumpu rock assemblage. Mineral Deposita 26:143–151

    Google Scholar 

  • Mao J, Lehmann B, Du A, Zhang G, Ma D, Wand Y, Zeng M, Kerrich R (2002) Re–Os dating of polymetallic Ni–Mo–PGE–Au mineralization in Lower Cambrian black shales and its geologic significance. Econ Geol 47:151–1061

    Google Scholar 

  • Mašek J (2000) Stratigraphy of the Proterozoic of the Barrandian area. Bulletin Czech Geological Survey 75:97–204

    Google Scholar 

  • Morse JW, Luther GW (1999) Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim Cosmochim Acta 63:3373–3378

    Google Scholar 

  • Nance RD, Murphy JB (1994) Constraining basement isotopic signatures and the palinspastic restoration of peripheral orogens: example from the Neoproterozoic Avalonian–Cadomian belt. Geology 22:617–620

    Google Scholar 

  • Nance RD, Murphy JB, Strachan RA, D'Lemos RS, Taylor GK (1991) Late Proterozoic tectonostratigraphic evolution of the Avalonian and Cadomian terranes. Precambrian Res 53:41–78

    Google Scholar 

  • Och LM, Shields-Zhou GA, Poulton SW, Manning C, Thirlwall MF, Li D, Chen X, Ling HF, Osborn T, Cremonese L (2013) Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, South China. Precambrian Res 225:166–189

    Google Scholar 

  • Orberger B, Pašava J, Gallien JP, Daudin L, Pinti D (2003) Biogenic and abiogenic hydrothermal sulfides: controls of rare metal distribution in black shales (Yukon Territories, Canada). J Geochem Explor 78–79:559–563

    Google Scholar 

  • Orberger B, Gallien JP, Pinti D, Fialin M, Daudin L, Gröcke DR, Pasava J (2005) Nitrogen and carbon partitioning in diagenetic and hydrothermal minerals from Paleozoic black shales (Selwyn Basin, Yukon Territories, Canada). Chem Geol 218:249–264

    Google Scholar 

  • Orberger B, Vymazalová A, Wagner C, Fialin M, Gallien J, Wirth R, Pašava J, Montagnac G (2007) Biogenic origin of intergrown Mo-sulphide- and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, Southern China). Chem Geol 238:213–231

    Google Scholar 

  • Oszczepalski S (1989) Kupferschiefer in southwestern Poland: sedimentary environments, metal zoning, and ore controls. In: Boyle RW, Brown AC, Jefferson GF, Jowett EC, Kirkham RV (eds) Sediment-hosted Stratiform copper deposits. Geol Assoc Can, Spec Pap, vol 36, pp 571–600

    Google Scholar 

  • Pagès A, Barnes S, Schmid S, Coveney R, Schwark L, Liu W, Grice K, Fan H, Wen H (2018) Geochemical investigation of the lower Cambrian mineralised black shales of South China and the late Devonian Nick deposit, Canada. Ore Geol Rev 94:396–413

    Google Scholar 

  • Pašava J (1993) Anoxic sediments—an important source for PGE; an overview. Ore Geol Rev 8:425–445

    Google Scholar 

  • Pašava J (2000) Normal versus metal-rich black shales in the Barrandian Neoproterozoic of the Tepla-Barrandian Unit: a summary with new data. Věstník Českého Geol ústavu 75:229–240

    Google Scholar 

  • Pašava J, Sulovský P, Kovalová M (1993) Geochemistry and mineralogy of Proterozoic metal-rich black shales from the Bohemian Massif, Czech Republic, with a description of possible new molybdenum selenide and telluride phases. Can Mineral 31:745–754

    Google Scholar 

  • Pašava J, Hladíková J, Dobeš P (1996) Origin of Proterozoic metal-rich black shales from the Bohemian Massif, Czech Republic. Econ Geol 91:63–79

    Google Scholar 

  • Pašava J, Kříbek B, Dobeš P, Vavřín I, Žák K, Delian F, Tao Z, Boiron MC (2003) Tin-polymetallic sulfide deposits in the eastern part of the Dachang tin field (South China) and the role of black shales in their origin. Mineral Deposita 38:39–66

    Google Scholar 

  • Pašava J, Vymazalová A, Petersen S (2007) PGE fractionation in seafloor hydrothermal systems: examples from mafic- and ultramafic-hosted hydrothermal fields at the slow-spreading Mid-Atlantic Ridge. Mineral Deposita 42:423–431

    Google Scholar 

  • Pašava J, Kříbek B, Vymazalová A, Sýkorová I, Žák K, Orberger B (2008) Multiple sources of metals of mineralization in Lower Cambrian black shales in South China: evidence from geochemical and petrographic study. Resour Geol 58:25–42

    Google Scholar 

  • Pašava J, Ackerman L, Halodová P, Pour O, Ďurišová J, Zaccarini F, Aiglsperger T, Vymazalová A (2017) Concentrations of platinum-group elements (PGE), Re and Au in arsenian pyrite and millerite from Mo–Ni–PGE-Au black shales (Zunyi region, Guizhou Province, China): results from LA-ICPMS study. Eur J Mineral 29:623–633

    Google Scholar 

  • Polgári M, Hein JR, Vígh T, Szabó-Drubin M, Fórizs I, Bíró L, Müller A, Tóth L (2012) Microbial processes and the origin of the Úrkút manganese deposit, Hungary. Ore Geol Rev 47:87–109

    Google Scholar 

  • Porter SJ, Selby D, Cameron V (2014) Characterising the nickel isotopic composition of organic-rich marine sediments. Chem Geol 387:12–21

    Google Scholar 

  • Quitté G, Oberli F (2006) Quantitative extraction and high precision isotopemeasurements of nickel by MC-ICPMS. J Anal At Spectrom 21:1249–1255

    Google Scholar 

  • Ratié G, Jouvin D, Garnier J, Rouxel O, Miska S, Guimaraes E, Cruz Vieira L, Sivry Y, Zelano I, Montarges-Pelletier E, Thil F, Quantin C (2015) Nickel isotope fractionation during tropical weathering of ultramafic rocks. Chem Geol 402:68–76

    Google Scholar 

  • Röhlich P (2000) Some stratigraphic problems of the Barrandian Neoproterozoic. Bulletin Czech Geological Survey 75:201–204

    Google Scholar 

  • Rudnick RL, Gao S (2003) 3.01 Composition of the continental crust. Treat Geochem 3:1–64

    Google Scholar 

  • Schovsbo NH (2001) Why barren intervals? A taphonomic case study of the Scandinavian alum shale and its faunas. Lethaia 34(4):271–285

    Google Scholar 

  • Scranton MI, Astor Y, Bohrer R, Ho TY, Müller-Karger F (2001) Controls on temporal variability of the geochemistry of the deep Cariaco basin. Deep Sea Research, v II 48:1605–1625

    Google Scholar 

  • Spivak-Birndorf LJ, Wang S-J, Bish DL, Wasylenki LE (2018) Nickel isotope fractionation during continental weathering. Chem Geol 476:316–326

    Google Scholar 

  • Steele RCJ, Elliott T, Coath CD, Regelous M (2011) Confirmation of mass-independent Ni isotopic variability in iron meteorites. Geochim Cosmochim Acta 75:7906–7925

    Google Scholar 

  • Steiner M, Wallis E, Erdtmann BD, Zhao YL, Yang RD (2001) Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils: insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr Palaeoclimatol Palaeoecol 169:165–191

    Google Scholar 

  • Tanimizu M, Hirata T (2006) Determination of natural isotopic variation in nickel using inductively coupled plasma mass spectrometry. J Anal At Spectrom 21:1423–1426

    Google Scholar 

  • Tankéré SPC, Muller FLL, Burton JD, Statham PJ, Guieu C, Matin JM (2001) Trace metal distributions in shelf waters of the northwestern Black Sea. Cont Shelf Res 21:1501–1532

    Google Scholar 

  • Tempelman-Kluit D (1981) Geology and mineral deposits of southern Yukon. In: Yukon geology and exploration 1979-80, Indian & Northern Affairs Canada, Exploration & Geological Services Division. Annual Report

  • Vance D, Little SH, Archer C, Cameron V, Andersen MB, Rijkenberg MJA, Lyons TW (2016) The oceanic budgets of nickel and zinc isotopes: the importance of sulfidic environments as illustrated by the Black Sea. Phil Trans R Soc A 374:20150294. https://doi.org/10.1098/rsta.2015.0294

    Google Scholar 

  • Vance D, Archer C, Little SH, Köbberich M, de Souza GF (2017) The oceanic cycles of the transition metals and their isotopes. Acta Geochim 36:359–362. https://doi.org/10.1007/s11631-017-0162-6

    Google Scholar 

  • Ventura TG, Gall L, Siebert C, Prytulak J, Szatmari P, Hürlimann M, Halliday AN (2015) The stable isotope composition of vanadium, nickel, and molybdenum in crude oils. Appl Geochem 59:104–117

    Google Scholar 

  • Vernhet E, Heubeck C, Zhu MY, Zhang JM (2007) Stratigraphic reconstruction of the Ediacaran Yangtze platform margin (Hunan province, China) using a large olistolith. Palaeogeogr Palaeoclimatol Palaeoecol 254:123–139

    Google Scholar 

  • Virtasalo J, Laitala J, Lahtinen R, Whitehouse M (2015) Pyritic event beds and sulfidized Fe (oxyhydr)oxide aggregates in metalliferous black mudstones of the Paleoproterozoic Talvivaara formation, Finland. Earth Planet Sci Letts 432:449–460

    Google Scholar 

  • Wallis E (2007) Die Klima- und Umweltgeschichte der südchinesischen Yangtze Plattform im Neoproterozoikum und frühen Kambrium: Hydrothermal aktive, Dichte-stratifizierte Epikontinentalbecken, der Schlüssel zum Verständnis der „Kambrischen Explosion“?: Ph.D. thesis, Technical University of Berlin, 227 p

  • Wasylenki LE, Wells RM, Spivak-Birndorf LJ (2014) Ni sorption to birnessite drives a surprisingly large fractionation. Am Geophysical Union Abstracts 1:3623

    Google Scholar 

  • Wasylenki LE, Howe HD, Spivak-Birndorf LJ, Bish DL (2015) Ni isotope fractionation during sorption to ferrihydrite: implications for Ni in banded iron formations. Chem Geol 400:56–64

    Google Scholar 

  • Wedepohl K (1991) The composition of the upper Earth’s crust and the natural cycles of selected metals. Metals in natural raw materials. Natural Resources. In Merian E (ed) Metals and their compounds in the environment. Occurrence, analysis, and biological relevance. New York, NY, VCH, p. 3–17

  • Wignall PB (1994) Black shales. Oxford University Press, New York, p 127

    Google Scholar 

  • Xu LG, Lehmann B, Mao JW, Nägler TF, Neubert N, Böttcher ME, Escher P (2012) Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment. Chem Geol 318–319:45–59

    Google Scholar 

  • Xu LG, Lehmann B, Mao JW (2013) Seawater contribution to polymetallic Ni–Mo–PGE–Au mineralization in Early Cambrian black shales of South China: evidence from Mo isotope, PGE, trace element, and REE geochemistry. Ore Geol Rev 52:66–84

    Google Scholar 

  • Young S, Loukola-Ruskeeniemi K, Pratt L (2013) Reactions of hydrothermal solutions with organic matter in Palaeoproterozoic black shales at Talvivaara, Finland: evidence from multiple sulfur isotopes. Earth Planet Sci Letts 367:1–14

    Google Scholar 

  • Zulauf G, DörrW FJ, Vejnar Z (1997) Late Cadomian crustal tilting and Cambrian transtension in the Teplá-Barrandian unit (Bohemian Massif, Central European Variscides). Geol Rundsch 86:571–584

    Google Scholar 

Download references

Acknowledgements

We thank L. Hulbert (Canada) for samples of Ni–Mo black shales from the Nick Property (Canada), S. Petersen (Germany) for the sample of hydrothermal crust from the Logatchev hydrothermal field, A. Käpyaho (Geological Survey of Finland) for sample preparation of Talvivaara black shales, V. Majer (Czech Geological Survey) for statistical calculations, I. Knésl (Czech Geological Survey) for drafting the figures, and R. Siddall (University of Helsinki) for language improvements. We also acknowledge B. Gueguen and one anonymous reviewer whose constructive reviews helped to increase the quality of the MS. Finally we thank B. Lehmann for his comments and efficient editorial handling.

Funding

This is a contribution to Research Grant no. 17-15700S of the Czech Grant Agency awarded to JP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Pašava.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pašava, J., Chrastný, V., Loukola-Ruskeeniemi, K. et al. Nickel isotopic variation in black shales from Bohemia, China, Canada, and Finland: a reconnaissance study. Miner Deposita 54, 719–742 (2019). https://doi.org/10.1007/s00126-018-0839-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-018-0839-8

Keywords

Navigation