Skip to main content
Log in

Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Platinum group element (PGE) mineralization occurs associated with mafic-ultramafic rocks in different environments. Although the PGE enrichment is primarily caused by magmatic processes, remobilization of Pd and Pt by hydrothermal fluids has likely been an important mechanism in increasing the precious metal grade in many cases. However, the timing of PGE enrichment by hydrothermal fluid processes is commonly difficult to constrain. The Jinchuan ultramafic intrusion in Northwest China is ranked the world’s third largest magmatic Ni-Cu sulfide deposit. Besides the main ore body consisting of net-textured and disseminated sulfides, there is hydrothermal mineralization associated with sheared contact zones of the intrusion, which shows elevated Cu and Pt concentrations. The unusually high Pt is hosted mainly in sperrylite within altered silicates. In this study, we applied the Pt-Os geochronometer to a Cu-Pt-rich ore body, yielding an isochron age of 436 ± 23 Ma. This age is significantly younger than the main ore formation age of ca. 825 Ma, but similar to that of the continental collision event between the Qaidam-Qilian Block and Alax Block of North China. This indicates that the intrusion may have been uplifted during the Paleozoic orogenic processes from deeper crust, resulting in the generation of the Cu-Pt-rich hydrothermal ore body. Our new data provide the first strong age constraints on the hydrothermal PGE enrichment, showing that the Pt-Os isotope system is potentially a powerful tool for dating hydrothermal overprinting on Ni-Cu-PGE sulfide deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Andersen JCQ, Thalhammer OAR (2006) Platinum-group element and Re-Os isotope variations of the high-grade Kilvenjärvi platinum-group element deposit, Portimo Layered Igneous Complex, Finland. Econ Geol 101(1):159–177. https://doi.org/10.2113/gsecongeo.101.1.159

    Google Scholar 

  • Barnes SJ, Liu W (2012) Pt and Pd mobility in hydrothermal fluids: evidence from komatiites and from thermodynamic modelling. Ore Geol Rev 44:49–58

    Google Scholar 

  • Barnes SJ, Tang ZL (1999) Chrome spinel from the Jinchuan Ni-Cu sulfide deposit, Gansu Province, People’s Republic of China. Econ Geol 94(3):343–356. https://doi.org/10.2113/gsecongeo.94.3.343

    Google Scholar 

  • Barnes S-J, Makovicky E, Makovicky M, Rose-Hansen J, Karupmoller S (1997) Partition coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between monosulfide solid solution and sulfide liquid and the formation of compositionally zoned Ni–Cu sulfide bodies by fractional crystallization of sulfide liquid. Can J Earth Sci 34:366–374

    Google Scholar 

  • Begemann F, Ludwig KR, Lugmair GW, Min K, Nyquist LE, Patchett PJ, Renne PR, Shih CY, Villa IM, Walker RJ (2001) Call for an improved set of decay constants for geochronological use. Geochim Cosmochi Acta 65:111–121

    Google Scholar 

  • Boudreau AE, Mathez EA, Mccallum IS (1986) Halogen geochemistry of the Stillwater and Bushveld complexes: evidence for transport of the platinum-group elements by Cl-rich fluids. J Petrol 27(4):967–986. https://doi.org/10.1093/petrology/27.4.967

    Google Scholar 

  • Brandon AD, Norman MD, Walker RJ, Morgan JW (1999) 186Os–187Os systematics of Hawaiian picrites. Earth Planet Sci Lett 174:25–42

    Google Scholar 

  • Brandon AD, Norman MD, Walker RJ (2005) The debate over core–mantle interaction. Earth Planet Sci Lett 232(3-4):211–225. https://doi.org/10.1016/j.epsl.2005.01.034

    Google Scholar 

  • Brandon AD, Walker RJ, Puchtel IS (2006) Platinum osmium isotope evolution of the Earth’s mantle: constraints from chondrites and Os-rich alloys. Geochim Cosmochim Acta 70:2093–2103

    Google Scholar 

  • Bursztyn NE, Olivo GB (2010) PGE-rich Ni-Cu sulfide mineralization in the Flin Flon greenstone belt, Manitoba, Canada: implications for hydrothermal remobilization of platinum group elements in basic-ultrabasic sequences. Econ Geol 105:1469–1490

    Google Scholar 

  • Cao Y, Song SG, Niu YL, Jung H, Jin ZM (2011) Variation of mineral composition, fabric and oxygen fugacity from massive to foliated eclogites during exhumation of subducted ocean crust in the North Qilian suture zone, NW China. J Metamorph Geol 29:699–720

    Google Scholar 

  • Chai G, Naldrett AJ (1992a) The Jinchuan ultramafic intrusion: cumulate of a high-MgO basaltic magma. J Petrol 33(2):277–303. https://doi.org/10.1093/petrology/33.2.277

    Google Scholar 

  • Chai G, Naldrett AJ (1992b) Characteristics of Ni–Cu–PGE mineralization and genesis of the Jinchuan deposit, Northwest China. Econ Geol 87(6):1475–1495. https://doi.org/10.2113/gsecongeo.87.6.1475

    Google Scholar 

  • Chen LM, Song XY, Keays RR, Tian YL, Wang YS, Deng YF, Xiao JF (2013) Segregation and fractionation of magmatic Ni-Cu-PGE sulfides in the Western Jinchuan intrusion, Northwestern China: insights from platinum group element geochemistry. Econ Geol 108(8):1793–1811. https://doi.org/10.2113/econgeo.108.8.1793

    Google Scholar 

  • Chen LM, Song XY, Danyushevsky LV, Wang YS, Tian YL, Xiao JF (2015) A laser ablation ICP-MS study of platinum-group and chalcophileelements in base metal sulfide minerals of the Jinchuan Ni–Cu sulfide deposit, NW China. Ore Geol Rev 65:955–967. https://doi.org/10.1016/j.oregeorev.2014.07.011

    Google Scholar 

  • Coggon JA, Nowell GM, Pearson DG, Parman SW (2011) Application of the 190Pt-186Os isotope system to dating platinum mineralization and ophiolite formation—an example from the Meratus Mountains, Borneo. Econ Geol 106:93–11

    Google Scholar 

  • Coggon JA, Nowell GM, Pearson DG, Oberthür T, Lorand JP, Melcher F, Parman SW (2012) The 190Pt-186Os decay system applied to dating platinum-group element mineralization of the Bushveld Complex, South Africa. Chem Geol 302–303:48–60

    Google Scholar 

  • Coggon JA, Luguet A, Nowell GM, Appel PWU (2013) Hadean mantle melting recorded by southwest Greenland chromitite 186Os signatures. Nat Geosci 6:871–874

    Google Scholar 

  • de Waal SA, Xu ZH, Li C, Mouri H (2004) Emplacement of viscious mushes in the Jinchuan ultramafic intrusion, Western China. Can Mineral 42:371–392

    Google Scholar 

  • Du AD, Zhao DM, Wang SX, Sun DZ, Liu DY (2001) Precise Re–Os dating for molybdenite by ID-NTIMS with Carius tube sample preparation. Rock Miner Anal 20:247–252 (in Chinese with English abstract)

    Google Scholar 

  • Du AD, SQ W, Sun DZ, Wang SX, WJ Q, Markey R, Stein H, Morgan J, Malinovskiy D (2004) Preparation and certification of Re–Os dating reference materials: molybdenite HLP and JDC. Geostand Geoanal Res 28:41–52

    Google Scholar 

  • Du AD, Qu WJ, Wang DH, Li C (2012) The Re-Os isotope system and its application in mineral deposits. Geological Publish House, Beijing (in Chinese)

  • Duan J, Li C, Qian ZZ, Jiao JG, Ripley EM, Feng YQ (2016) Multiple S isotopes, zircon Hf isotopes, whole-rock Sr-Nd isotopes, and spatial variations of PGE tenors in the Jinchuan Ni-Cu-PGE deposit, NW China. Mineral Deposita 51(4):557–574. https://doi.org/10.1007/s00126-015-0626-8

    Google Scholar 

  • Farrow CEG, Watkinson DH, Jones PC (1994) Fluid inclusions in sulfides from north and south range Cu-Ni-PGE deposits, Sudbury Structure, Ontario. Econ Geol 89:647–655

    Google Scholar 

  • Fiorentini M, Beresford S, Barley M, Duuring P, Bekker A, Rosengren N, Cas R, Hronsky J (2012) Sulfide deposits, Agnew-Wiluna greenstone belt, Western Australia: insights from the multiple sulfur isotopes. Econ Geol 107:781–796

    Google Scholar 

  • Gál B, Molnár F, Guzmics T, Mogessie A, Szabó C, Peterson DM (2013) Segregation of magmatic fluids and their potential in the mobilization of platinum-group elements in the South Kawishiwi intrusion, Duluth Complex, Minnesota—evidence from petrography, apatite geochemistry and coexisting fluid and melt inclusions. Ore Geol Rev 54:59–80

    Google Scholar 

  • Gao YL, Tang ZL, Song XY, Tian YL, Meng YZ (2009) Study on genesis of the concealed Cu-rich ore body in the Jinchuan Cu-Ni deposit and its prospecting in depth. Acta Petrol Sin 25:3379–3395 (in Chinese with English abstract)

    Google Scholar 

  • Godel B, Barnes S-J, Maier WD (2007) Platinum-group elements in sulfide minerals, platinum-group minerals, and whole-rocks of the Merensky Reef (Bushveld Complex, South Africa): implications for the formation of the reef. J Petrol 48(8):1569–1604. https://doi.org/10.1093/petrology/egm030

    Google Scholar 

  • Guo YS, Wang JR, Xie XL (2001) Thecharacteristics of the quartz albitophyres from Baiyin mine fields ascertained by isotopes of Sm-Nd and Rb-Sr. J Gansu Sci 13:37–40 (in Chinese)

  • Hannah JL, Stein HJ (2002) Re-Os model for the origin of sulfide deposits in anorthosite-associated intrusive complexes. Econ Geol 97:371–383

    Google Scholar 

  • Hanski E, Luo ZY, Oduro H, Walker RJ (2011) The Pechenga Ni-Cu sulfide deposits, northwestern Russia: a review with new constraints from the feeder dikes. Econ Geol 17:145–162

    Google Scholar 

  • Hinchey JG, Hattori KH (2005) Magmatic mineralization and hydrothermal enrichment of the high grade zone at the Lac des Iles palladium mine, Northern Ontario, Canada. Mineral Deposita 40:13–23

    Google Scholar 

  • Holwell DA, McDonald I (2007) Distribution of platinum-group elements in the Platreef at Overysel, northern Bushveld Complex: a combined PGM and LA-ICP-MS study. Contrib Mineral Petrol 154:171–190

    Google Scholar 

  • Iljina M (1994) The Portimo Layered Igneous Complex. Acta Univ Ouluensis, Series A 258:1–158

    Google Scholar 

  • Iljina M, Hanski E (2005) Layered mafic intrusions of the Tornio-Näränkävaara belt. In: Lehtinen M, Nurmi P, Rämö T (eds) Precambrian bedrock of Finland—key to the evolution of the Fennoscandian Shield. Elsevier, Amsterdam, pp 103–138

    Google Scholar 

  • Keays RR, Lightfoot PC (2010) Crustal sulfur is required to form magmatic Ni-Cu sulfide deposits: evidence from chalcophile element signatures of Siberian and Deccan trap basalts. Mineral Deposita 45:241–257

    Google Scholar 

  • Konnunaho JP, Hanski EJ, Bekker A, Halkoaho TAA, Hiebert RS, Wing BA (2013) The Archaean komatiite-hosted, PGE-bearing Ni-Cu sulphide deposit at Vaara, Eastern Finland: evidence for assimilation of external sulphur and post-depositional desulphurization. Mineral Deposita 48:967–989

    Google Scholar 

  • Lahtinen R, Korja A, Nironen M (2005) Paleoproterozoic tectonic evolution. In: Lehtinen M, Nurmi PA, Rämö OT (eds) Precambrian geology of Finland—key to the evolution of the Fennoscandian Shield. Elsevier BV, Amsterdam, pp 481–532. https://doi.org/10.1016/S0166-2635(05)80012-X

    Google Scholar 

  • Le Vaillant M, Barnes SJ, Fiorentini ML, Miller J, McCuaig TC, Muccilli P (2015) A hydrothermal Ni-As-PGE geochemical halo around the Miitel komatiite-hosted nickel sulfide deposit, Yilgarn Craton, Western Australia. Econ Geol 110:505–530

    Google Scholar 

  • Le Vaillant M, Saleem M, Barnes SJ, Fiorentini ML, Miller J, Beresford S, Perring C (2016) Hydrothermal remobilisation around a deformed and remobilized komatiite-hosted Ni-Cu-(PGE) deposit, Sarah’s Find, Agnew Wiluna greenstone belt, Yilgarn Craton, Western Australia. Mineral Deposita 51:369–388

    Google Scholar 

  • Lehmann J, Arndt N, Windley B, Zhou M-F, Wang CY, Harris C (2007) Field relationships and geochemical constraints on the emplacement of the Jinchuan intrusion and its Ni-Cu-PGE sulfide deposit, Gansu, China. Econ Geol 102(1):75–94. https://doi.org/10.2113/gsecongeo.102.1.75

    Google Scholar 

  • Li C, Ripley EM (2011) The giant Jinchuan Ni-Cu-(PGE) deposit: tectonic setting, magma evolution, ore genesis, and exploration implications. Rev Econ Geol 17:163–180

    Google Scholar 

  • Li C, Ripley EM, Naldrett AJ (2003) Compositional variation of olivine and sulfur isotopes in the Noril’sk and Talnakh intrusions, Siberia: implications for ore-forming processes in dynamic magma conduits. Econ Geol 98:69–86

    Google Scholar 

  • Li C, Xu ZH, de Waal SA, Ripley EM, Maier WD (2004a) Compositional variations of olivine from the Jinchuan Ni-Cu sulfide deposit, Western China: implications for ore genesis. Mineral Deposita 39(2):159–172. https://doi.org/10.1007/s00126-003-0389-5

    Google Scholar 

  • Li XH, Su L, Song B, Liu DY (2004b) SHRIMP zircon U–Pb age of the Jinchuan ultramafic intrusion and its geological significance. Chin Sci Bull 49:420–422 (in Chinese)

    Google Scholar 

  • Li XH, Su L, Chung SL, Li ZX, Liu Y, Song B, Liu DY (2005) Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: associated with the ~825 Ma South China mantle plume? Geochem Geophys Geosyst 6:1–16

    Google Scholar 

  • Li C, Ripley EM, Naldrett AJ (2009) A new genetic model for the giant Ni-Cu-PGE sulfide deposits associated with Siberian flood basalts. Econ Geol 104(2):291–301. https://doi.org/10.2113/gsecongeo.104.2.291

    Google Scholar 

  • Lin YH, Zhang LF, Ji JQ, Song SG (2010) 40Ar/39Ar age of Jiugequan lawsonite blueschists in Northern Qilian Mountains and its petrologic significance. Chin Sci Bull 55:2021–2027

    Google Scholar 

  • Liou JG, Wang X, Coleman RG (1989) Blueschists in major suture zones of China. Tectonics 8:609–619

    Google Scholar 

  • Liu YJ, Neubauer F, Genser J, Takasu A, Ge XH, Handler R (2006) 40Ar/39Ar ages of blueschist facies pelitic schists from Qingshuigou in the Northern Qilian Mountains, Western China. Island Arc 15:87–198

    Google Scholar 

  • Ludwig KR (2003) User’s manual for Isoplot 3.00: a geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publ

  • Ma JH (2012) Jinchuan mining ductile shear zone characteristics and its significance. PhD thesis, Chang’an University

  • Maier WD, Rasmussen B, Fletcher I, Godel B, Barnes S, Fisher I, Yang SH, Huhma H, Lahaye Y (2015) Petrogenesis of the 2.765–2.775 Ga Monts de Cristal Complex, Gabon: evidence for direct precipitation of Pt-rich phases from basaltic magma. J Petrol 56(7):1285–1308. https://doi.org/10.1093/petrology/egv035

    Google Scholar 

  • Maier WD, Smithies RH, Spaggiari CV, Barnes SJ, Kirkland CL, Yang SH, Lahaye Y (2016) Petrogenesis and Ni-Cu sulphide potential of mafic-ultramafic rocks in the Mesoproterozoic Fraser zone within the Albany-Fraser Orogen, Western Australia. Precambrian Res 281:27–46

    Google Scholar 

  • Mogessie A, Stumpfl EF, Weiblen PW (1991) The role of fluids in the formation of platinum-group-minerals, Duluth Complex, Minnesota; mineralogic, textural and chemical evidence. Econ Geol 86(7):1506–1518. https://doi.org/10.2113/gsecongeo.86.7.1506

    Google Scholar 

  • Molnár F, Watkinson DH, Jones PC, Gatter I (1997) Fluid inclusion evidence for hydrothermal enrichment of magmatic ore at the contact zone of the Ni–Cu–platinum group element 4b deposit, Lindsley mine, Sudbury, Canada. Econ Geol 92(6):674–685. https://doi.org/10.2113/gsecongeo.92.6.674

    Google Scholar 

  • Molnár F, Mänttäri I, O’Brien H, Lahaye Y, Pakkanen L, Johanson B, Käpyaho A, Sorjonen-Ward P, Whitehouse M, Sakellaris G (2016) Boron, sulphur and copper isotope systematics in the orogenic gold deposits of the Archaean Hattu schist belt, Eastern Finland. Ore Geol Rev 77:133–162

    Google Scholar 

  • Morgan JW, Walker RJ, Horan MF, Ellyn SB, Naldrett AT (2002) 190Pt–186Os and 187Re–187Os systematics of the Sudbury Igneous Complex, Ontario. Geochim Cosmochim Acta 66(2):273–290. https://doi.org/10.1016/S0016-7037(01)00768-2

    Google Scholar 

  • Mukwakwami J, Lafrance B, Lesher CM, Tinkham DK, Rayner NM, Ames DE (2014a) Deformation, metamorphism and mobilization of Ni-Cu-PGE sulfide ores at Garson mine, Sudbury. Mineral Deposita 49:175–198

    Google Scholar 

  • Mukwakwami J, Lesher CM, Lafrance B (2014b) Geochemistry of deformed and hydrothermally-mobilized magmatic Ni–Cu–PGE ores at the Garson mine, Sudbury. Econ Geol 109(2):367–386. https://doi.org/10.2113/econgeo.109.2.367

    Google Scholar 

  • Müller W, Shelley M, Miller P, Broude S (2009) Initial performance metrics of a new custom-designed ArF excimer LA-ICPMS system coupled to a two-volume laser-ablation cell. J Anal Atom Spectrom 24:209–214

  • Mungall JE, Brenan JM (2014) Partitioning of platinum-group elements and Au between sulfide liquid and basalt and the origins of mantle crust fractionation of the chalcophile elements. Geochim Cosmochim Acta 125:265–289. https://doi.org/10.1016/j.gca.2013.10.002

    Google Scholar 

  • Naldrett AJ (1989) Magmatic Sulfide Deposits. Oxford University Press, New York

  • Naldrett AJ, Duke J (1980) Platinum metals magmatic sulfide ores. Science 208:1417–1424

    Google Scholar 

  • Naldrett AJ, Asif M, Schandl E, Searcy T, Morrison CG, Binney WP, Moore C (1999) Platinum-group elements in the Sudbury ores: significance with respect to the origin of different ore zones and to the exploration for footwall orebodies. Econ Geol 94:185–210

    Google Scholar 

  • Olivo GR, Theyer P (2004) Platinum group minerals from the McBratney PGE-Au prospect in the Flin Flon greenstone belt, Manitoba, Canada. Can Mineral 42(2):667–681. https://doi.org/10.2113/gscanmin.42.2.667

    Google Scholar 

  • Prichard HM, Knight RD, Fisher PC, McDonald I, Zhou M-F, Wang CY (2013) Distribution of platinum-group elements in magmatic and altered ores in the Jinchuan intrusion, China: an example of selenium remobilization by postmagmatic fluids. Mineral Deposita 48:767–786

    Google Scholar 

  • Puchtel IS, Brandon AD, Humayun M (2004) Precise Pt–Re–Os isotope systematics of the mantle from 2.7-Ga komatiites. Earth Planet Sci Lett 224:157–174

    Google Scholar 

  • Puchtel IS, Brandon AD, Humayun M, Walker RJ (2005) Evidence for the early differentiation of the core from Pt–Re–Os isotope systematics of 2.8-Ga komatiites. Earth Planet Sci Lett 237(1-2):118–134. https://doi.org/10.1016/j.epsl.2005.04.023

    Google Scholar 

  • Puchtel IS, Walker RJ, Brandon AD, Nisbet EG (2009) Pt–Re–Os and Sm–Nd isotope and HSE and REE systematics of the 2.7 Ga Belingwe and Abitibi komatiites. Geochim Cosmochim Acta 73:6367–6389

    Google Scholar 

  • Puchtel IS, Walker RJ, Mathieu T, Nisbet EG, Byerly GR (2014) Insights into early Earth from the Pt–Re–Os isotope and highly siderophile element abundance systematics of Barberton komatiites. Geochim Cosmochim Acta 125:394–413

    Google Scholar 

  • Qi XQ, Zhang JX, Li HB, Cai JL (2004) Geochronology of the dextral strike ductile shear zone in south margin of the Northern Qilian Mountains and its geological significance. Earth Sci Front 11:469–479 (in Chinese with English abstract)

    Google Scholar 

  • Qian Q, Wang YM, Li HM, Jia XQ, Han S, Zhang Q (1998) Geochemical characteristics and genesis of diorites from Laohushan. Gansu Province. Acta Petrol Sin 14:520–528 (in Chinese with English abstract)

    Google Scholar 

  • Ripley EM (1990) Platinum-group element geochemistry of Cu–Ni mineralization in the basal zone of the Babbit Deposit, Duluth, Complex, Minnesota. Econ Geol 85:830–841

    Google Scholar 

  • Ripley EM, Li C (2013) Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni-Cu-(PGE) ore genesis? Econ Geol 108:45–58

    Google Scholar 

  • Ripley EM, Butler BK, Taib NI, Lee I (1993) Hydrothermal alteration in the Babbitt Cu-Ni deposit, Duluth Complex; mineralogy and hydrogen isotope systematics. Econ Geol 88(3):679–696. https://doi.org/10.2113/gsecongeo.88.3.679

    Google Scholar 

  • Ripley EM, Park YR, Lambert DD, Frick LR (2001) Re-Os isotopic variations in carbonaceous pelites hosting the Duluth Complex: implications for metamorphic and metasomatic processes associated with mafic magma chambers. Geochim Cosmochim Acta 65(17):2965–2978. https://doi.org/10.1016/S0016-7037(01)00635-4

    Google Scholar 

  • Ripley EM, Li C, Shin D (2002) Paragneiss assimilation in the genesis of magmatic Ni-Cu-Co sulfide mineralization at Voisey’s Bay, Labrador: 34S, δ13C, and Se/S evidence. Econ Geol 97:1307–1318

    Google Scholar 

  • Ripley EM, Sarkar A, Li C (2005) Mineralogic and stable isotope studies of hydrothermal alteration at the Jinchuan Ni–Cu deposit, China. Econ Geol 100:1349–1361

    Google Scholar 

  • Seat Z, Beresford SW, Grguric BA, Gee MAM, Grassineau NV (2009) Reevaluation of the role of external sulfur addition in the genesis of Ni-Cu-PGE deposits: evidence from the Nebo-Babel Ni-Cu-PGE deposit, West Musgrave, Western Australia. Econ Geol 104(4):521–538. https://doi.org/10.2113/gsecongeo.104.4.521

    Google Scholar 

  • SGU (the Sixth Geological Unit of the Geological Survey of Gansu Province) (1984) Geology of the Baijiaozuizi Cu–Ni sulfide deposit. Geological Publish House, Beijing (in Chinese)

    Google Scholar 

  • Shirey SB, Walker RJ (1995) Carius tube digestion for low-blank rhenium-osmium analysis. Anal Chem 67(13):2136–2141. https://doi.org/10.1021/ac00109a036

    Google Scholar 

  • Smoliar MI, Walker RJ, Morgan JW (1996) Re-Os ages of group IIA, IIIA, IVA, and IVB iron meteorites. Science 271(5252):1099–1102. https://doi.org/10.1126/science.271.5252.1099

    Google Scholar 

  • Song SG, Yang JS, ZQ X, Liou JG, CL W, Shi RD (2003) Metamorphic evolution of coesite-bearing UHP terrane in the North Qaidam, northern Tibet, NW China. J Metamorph Geol 21(6):631–644. https://doi.org/10.1046/j.1525-1314.2003.00469.x

    Google Scholar 

  • Song SG, Zhang LF, Niu YL, Su L, Jian P, Liu DY (2005) Geochronology of diamond bearing zircons from garnet peridotite in the North Qaidam UHPM belt, northern Tibetan Plateau: a record of complex histories from oceanic lithosphere subduction to continental collision. Earth Planet Sci Lett 234(1-2):99–118. https://doi.org/10.1016/j.epsl.2005.02.036

    Google Scholar 

  • Song SG, Zhang LF, Niu YL, Su L, Song B, Liu DY (2006) Evolution from oceanic subduction to continental collision: a case study for the northern Tibetan Plateau based on geochemical and geochronological data. J Petrol 47:435–455

    Google Scholar 

  • Song XY, Keays RR, Zhou M-F, Qi L, Ihlenfeld C, Xiao JF (2009a) Siderophile and chalcophile elemental constraints on the origin of the Jinchuan Ni-Cu-(PGE) sulfide deposit, NW China. Geochim Cosmochim Acta 73:404–424

    Google Scholar 

  • Song SG, Niu Y, Zhang LF, Wei CJ, Liou JG, Su L (2009b) Tectonic evolution of early Paleozoic HP metamorphic rocks in the North Qilian Mountains, NW China: new perspectives. J Asian Earth Sci 35(3-4):334–353. https://doi.org/10.1016/j.jseaes.2008.11.005

    Google Scholar 

  • Song XY, Danyushevsky LV, Keays RR, Chen LM, Wang YS, Tian YL, Xiao JF (2012) Structural, lithological, and geochemical constraints on the dynamic magma plumbing system of the Jinchuan Ni–Cu sulfide deposit, NW China. Mineral Deposita 47:277–297

    Google Scholar 

  • Song SG, Niu YL, Su L, Zhang C, Zhang LF (2014) Continental orogenesis from ocean subduction, continent collision/subduction, to orogen collapse, and orogen recycling: the example of the North Qaidam UHPM belt, NW China. Earth Sci Rev 129:59–84. https://doi.org/10.1016/j.earscirev.2013.11.010

    Google Scholar 

  • Su S, Li C, Zhou M-F, Ripley E, Qi L (2008) Controls on variations of platinum-group element concentrations in the sulfide ores of the Jinchuan Ni-Cu deposit, Western China. Mineral Deposita 43:609–622

    Google Scholar 

  • Sun WD, Peng ZC, Wang ZR, Yin QZ (1997) Oxygen corrections in negative thermal ionization mass spectrometry determination of rhenium and osmium. J Chin Mass Spectrom Soc 18:1–6 (in Chinese with English abstract)

    Google Scholar 

  • Tang ZL (1993) Genetic model of the Jinchuan nickel–copper deposit. Geol Assoc Can Spec Pap 40:389–401 (in Chinese)

    Google Scholar 

  • Tang ZL, Li WY (1995) The metallogenetic model and geological contrast of the Jinchuan platinum bearing Cu–Ni sulfide deposit. Geological Publish House, Beijing (in Chinese)

    Google Scholar 

  • Tang ZL, Bai YL, Li ZL (2002) Geotectonic settings of large and superlarge mineral deposits on the southwestern margin of the North China Plate. Acta Geol Sin 76:367–377 (in Chinese with English abstract)

    Google Scholar 

  • Walker RJ, Morgan JW, Naldrett AJ, Li C, Fassett JD (1991) Re–Os systematics of Ni–Cu sulfide ores, Sudbury Igneous Complex, Ontario: evidence for a major crustal component. Earth Planet Sci Lett 105:416–429

    Google Scholar 

  • Walker RJ, Morgan JW, Beary ES, Smoliar MI, Czamanske GK, Horan MF (1997) Applications of the 190Pt–186Os isotope system to geochemistry and cosmochemistry. Geochim Cosmochim Acta 61:4799–4807

    Google Scholar 

  • Wang CY, Zhang Q, Qian Q (2005) Geochemistry of the early Paleozoic Baiyin volcanic rocks (NW China): implications for the tectonic evolution of the North Qilian orogenic belt. J Geol 113:83–94

    Google Scholar 

  • Wood SA (2002) The aqueous geochemistry of the platinum group elements with applications to ore deposits. Can Inst Min Metal Petrol 54:211–249

    Google Scholar 

  • Wu CL, Xu XY, Gao QM, Li XM, Lei M, Gao YH, Frost RB, Wooden JL (2010) Early Palaezoic granitoid magmatism and tectonic evolution in North Qilian, NW China. Acta Petrol Sin 26:1027–1044 (in Chinese with English abstract)

    Google Scholar 

  • Yan MC, Wang CS, Gu TX, Chi QH, Yan WD (1998) Preparation of geochemical certified reference materials for platinum group elements. Rock Miner Anal 17:1–21 (in Chinese with English abstract)

    Google Scholar 

  • Yang G (2005) Applications of Re–Os and Pt–Os isotopic systems in the ore deposit. Doctoral Dissertation of University of Science and Technology of China (in Chinese with English abstract)

  • Yang JS, ZQ X, Zhang JX, Song SG, CL W, Shi RD, Li HB, Brunel M (2002) Early Palaeozoic North Qaidam UHP metamorphic belt on the north-eastern Tibetan plateau and a paired subduction model. Terra Nova 14:397–404

    Google Scholar 

  • Yang G, Du AD, Chen JF, Qu WJ (2003) The measurement of Pt in rocks by isotope dilution ICP-MS. Rock Miner Anal 22:5–9 (in Chinese with English abstract)

    Google Scholar 

  • Yang G, Du AD, Lu J, Qu WJ, Chen JF (2005) Re–Os dating of massive sulfide ores of the Jinchuan Ni–Cu deposit by ICP-MS. Sci China (D) 35:241–245 (in Chinese)

    Google Scholar 

  • Yang XZ, Ishihara S, Zhao DH (2006) Genesis of the Jinchuan PGE deposit, China: evidence from fluid inclusions, mineralogy and geochemistry of precious elements. Mineral Petrol 86:109–128

    Google Scholar 

  • Yang SH, WJ Q, Tian YL, Chen JF, Yang G, AD D (2008) Origin of the inconsistent apparent Re–Os ages of the Jinchuan Ni–Cu sulfide ore deposit, China: post-segregation diffusion of Os. Chem Geol 247(3-4):401–418. https://doi.org/10.1016/j.chemgeo.2007.11.002

    Google Scholar 

  • Yang WT, Duan LZ, Zhang Y (2013) Studying in middle-tectonic level and rock deformation characteristic in Longshoushan area. Northwest Geol 46:44–53 (in Chinese with English abstract)

    Google Scholar 

  • Yin G, Zhang SF, Fan LM (1998) Isotope geochronology studies of the main geological events on the sulfide ore deposit and neighbourhood in Baiyin, Gansu. Geol Geochem 1:6–14 (in Chinese)

  • Zhang JX, Yang JS, Meng FC, Wan YS, Li HM, CL W (2006) U–Pb isotopic studies of eclogites and their host gneisses in the Xitieshan area of the North Qaidam Mountains, Western China: new evidence for an early Paleozoic HP-UHP metamorphic belt. J Asian Earth Sci 28:143–150

    Google Scholar 

  • Zhang MJ, Kamo S, Li C, Hu PE, Ripley EM (2010) Precise U-Pb zircon-baddeleyite age of the Jinchuan sulfide ore-bearing ultramafic intrusion, Western China. Mineral Deposita 45:3–9

    Google Scholar 

  • Zhao GC, Sun M, Wilde SA, Li SZ (2005) Late Archean to Paleoproterozoic evolution of the North China Craton: key issues revisited. Precambrian Res 136:177–202

    Google Scholar 

  • Zhou M-F, Yang ZX, Song XY, Lesher CM, Keays RR (2002) Magmatic Ni–Cu–(PGE) sulfide deposits in China. In: Cabri LJ (ed) The geology, geochemistry, mineralogy, mineral beneficiation of the platinum-group elements, Can Inst Mining Metall Petrol, Spec Vol 54:619–636

Download references

Acknowledgements

We are grateful to Tongyou Liu, Fugui Qiao, Jiapu Jiang, Lizhong Xiao, and Rongqi Sun of the Jinchuan Nonferrous Metal Cooperation for their assistance with the fieldwork. We thank Yulong Tian and Yalin Gao of the Jinchuan Nonferrous Metal Cooperation, Zongli Tang and Jiangang Jiao of the Chang’an University, and Li Chusi of the Indiana University for enlightening the discussions. We thank Wang Ruiting of the Northwest Mining and Geology Group Cooperation Limited for providing two samples. We are grateful to Fagang Zeng and Li Li for their assistance in the chemistry related to Pt, Os, Cu, and Ni analyses and to Fengjiao Li for the assistance in the sample preparation for N-TIMS measurements. Holly Stein and Laurie Reisberg are thanked for their constructive and helpful reviews. Wolfgang Maier and Bernd Lehmann are thanked for efficient handling. Fangfang Guo is thanked for helpful suggestions.

Funding

This work is supported by the NSFC (grant nos. 40373010, 40534020, and 40972070), the Academy of Finland (nos. 276614 and 281859), and the Renlund Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shenghong Yang or Gang Yang.

Additional information

Editorial handling: W. D. Maier

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Yang, G., Qu, W. et al. Pt-Os isotopic constraints on the age of hydrothermal overprinting on the Jinchuan Ni-Cu-PGE deposit, China. Miner Deposita 53, 757–774 (2018). https://doi.org/10.1007/s00126-017-0775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-017-0775-z

Keywords

Navigation