Skip to main content
Log in

Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The southern sector of the Apuan Alps (AA) massif, Tuscany, Italy, is characterized by the occurrence of a series of baryte–pyrite–iron oxide orebodies whose Tl-rich nature was recognized only recently. The geochemistry of the pyrite ore was investigated through inductively coupled plasma mass spectrometry. In addition, lead isotope data for selected pyrite ores from AA were collected. Pyrite ores are characterized by a complex geochemistry, with high concentrations of Tl (up to 1100 μg/g) coupled with high As and Sb contents; the Co/Ni ratio is always <1. Geochemical data of pyrite and marcasite ore samples from other mining districts of Tuscany have been collected in order to compare them with those from the AA. These samples usually have very low Tl content (less than 2 μg/g) and high to very high Co/Ni and As/Sb ratios. Only some samples from the Sb–Hg ore deposits showed very high Tl concentrations (up to ~3900 μg/g). Another difference is related to the lead isotope composition, with pyrite ores from AA markedly less radiogenic than those from the other deposits from Tuscany. Geochemical data of pyrite ores from AA give new insights on the genesis of the baryte–pyrite–iron oxide orebodies, relating their formation to low-temperature hydrothermal systems active during early Paleozoic; in addition, these data play a fundamental role in assessing the environmental impact of these deposits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Batley GE, Florence TM (1975) Determination of thallium in natural waters by anodic stripping voltammetry. J Electroanal Chem 61:205–211

    Article  Google Scholar 

  • Benvenuti M (1991) Ni-sulphides from the Bottino mine (Tuscany, Italy). Eur J Mineral 3:79–84

    Article  Google Scholar 

  • Benvenuti M, Lattanzi P, Tanelli G (1989) Tourmalinite-associated Pb-Zn-Ag mineralization at Bottino, Apuan Alps, Italy: geologic setting, mineral textures, and sulfide chemistry. Econ Geol 84:1277–1292

    Article  Google Scholar 

  • Benvenuti M, Lattanzi P, Tanelli G, Cortecci G (1986) The Ba-Fe-pyrite deposit of Buca della Vena, Apuan Alps, Italy. Rend Soc Ital Mineral Petrol 41:347–358

    Google Scholar 

  • Benvenuti M, Tanelli G, Cortecci G, Lattanzi P (1990) Geology, mineralogy and geochemistry of the barite-pyrite (Pb-Ag) deposit at Pollone, Apuane Alps. Boll Soc Geol Ital 109:735–741

    Google Scholar 

  • Bergmann H (1969) Geologische und lagerstättenkundliche untersuchugen in den südwestlichen Apuaner Alpen (Toskana, Italien). Ph.D. Thesis, Ludwig-Maximilians-Universität München

  • Biagioni C, Bonaccorsi E, Moëlo Y, Orlandi P (2014a) Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). I. Routhierite, (Cu0.8Ag0.2)Hg2Tl(As1.4Sb0.6)Σ=2S6, from Monte Arsiccio mine: occurrence and crystal structure. Eur J Mineral 26:163–170

    Article  Google Scholar 

  • Biagioni C, Bonaccorsi E, Moëlo Y, Orlandi P, Bindi L, D’Orazio M, Vezzoni S (2014b) Mercury-arsenic sulfosalts from the Apuan Alps (Tuscany, Italy). II. Arsiccioite, AgHg2TlAs2S6, a new mineral from the Monte Arsiccio mine: occurrence, crystal structure and crystal chemistry of the routhierite isotypic series. Mineral Mag 78:101–117

    Article  Google Scholar 

  • Biagioni C, Bonaccorsi E, Orlandi P (2011) Volaschioite, Fe3+ 4(SO4)O2(OH)6·2H2O, a new mineral species from Fornovolasco, Apuan Alps, Tuscany, Italy. Can Mineral 49:605–614

    Article  Google Scholar 

  • Biagioni C, D’Orazio M, Vezzoni S, Dini A, Orlandi P (2013) Mobilization of Tl-Hg-As-Sb-(Ag,Cu)-Pb sulfosalt melts during low-grade metamorphism in the Alpi Apuane (Tuscany, Italy). Geology 41:747–750

    Article  Google Scholar 

  • Biagioni C, Dini A, Orlandi P, Moëlo Y, Pasero M, Zaccarini F (2016) Lead-antimony sulfosalts from Tuscany (Italy). XX. Members of the jordanite–geocronite series from the Pollone mine, Valdicastello Carducci: occurrence and crystal structures. Minerals 6:15

  • Biagioni C, Moëlo Y, Orlandi P (2014c) Lead-antimony sulfosalts from Tuscany (Italy). XV. (Tl-Ag)-bearing rouxelite from Monte Arsiccio mine: occurrence and crystal chemistry. Mineral Mag 78:651–661

    Article  Google Scholar 

  • Biagioni C, Orlandi P, Pasero M (2009) Ankangite from the Monte Arsiccio mine (Apuan Alps, Tuscany, Italy): occurrence, crystal structure, and classification problems in cryptomelane group minerals. Period Mineral 78:3–11

    Google Scholar 

  • Biagioni C, Orlandi P, Pasero M, Nestola F, Bindi L (2014d) Mapiquiroite, (Sr,Pb)(U,Y)Fe2(Ti,Fe3+)18O38, a new member of the crichtonite group from the Apuan Alps, Tuscany, Italy. Eur J Mineral 26:427–437

    Article  Google Scholar 

  • Boni M, Koeppel V (1985) Ore-lead isotope pattern from the Iglesiente-Sulcis Area (SW Sardinia) and the problem of remobilization of metals. Mineral Deposita 20:185–193

    Article  Google Scholar 

  • Boni M, Iannace A, Koeppel V, Früh-Green G, Hansmann W (1992) Late to post-hercynian hydrothermal activity and mineralization in Southwest Sardinia (Italy). Econ Geol 87:2114–2137

    Article  Google Scholar 

  • Campanella B, Onor M, D’Ulivo A, Giannecchini R, D’Orazio M, Petrini R, Bramanti E (2016) Human exposure to thallium through tap water: a study from Valdicastello Carducci and Pietrasanta (northern Tuscany, Italy). Sci Total Environ 548-549:33–42

    Article  Google Scholar 

  • Carmignani L, Dessau G, Duchi G (1972) I giacimenti minerari delle Alpi Apuane e loro correlazioni con l’evoluzione del gruppo montuoso. Mem Soc Geol Ital 11:417–431

    Google Scholar 

  • Carmignani L, Dessau G, Duchi G (1975) Una mineralizzazione sin-tettonica: il giacimento di Valdicastello (Alpi Apuane). Rapporti fra tettonica e minerogenesi in Toscana. Boll Soc Geol Ital 94:725–758

    Google Scholar 

  • Carmignani L, Dessau G, Duchi G (1976) I giacimenti a barite, pirite ed ossidi di ferro delle Alpi Apuane. Studio minerogenetico e strutturale. Boll Soc Geol Ital 95:1009–1061

    Google Scholar 

  • Cavarretta G, Franceschelli M, Pandeli E, Puxeddu M, Valori A (1992) Tourmalinites from the Triassic Verrucano of the Northern Apennines, Italy. Newsletter-International Union of Geological Sciences, Commission on Stratigraphy, Subcommission on Devonian Stratigraphy 5:335–338

    Google Scholar 

  • Chappaz A, Lyons TW, Gregory DD, Reinhard CT, Gill BC, Li C, Large RR (2014) Does pyrite act as an important host for molybdenum in modern and ancient euxinic sediments? Geochim Cosmochim Acta 126:112–122

  • Ciarapica G, Olivero S, Passeri L (1985) Inquadramento geologico delle principali mineralizzazioni apuane ed indizi a favore di una metallogenesi triassica. Industria Mineraria 1:19–37

    Google Scholar 

  • Conti P, Di Pisa A, Gattiglio M, Meccheri M (1993) The pre-Alpine basement in the Alpi Apuane (Northern Apennines, Italy). In: Von Raumer JF, Neubauer F (eds) Pre-Mesozoic geology in the Alps. Springer-Verlag, Berlin, pp. 609–621

    Chapter  Google Scholar 

  • Conti P, Massa G, Meccheri M, Carmignani L (2010) Geological map of the Stazzema area (Alpi Apuane, Northern Apennines, Italy). Scale 1/10000. Centro di Geotecnologie, Università di Siena

  • Cortecci G, Benvenuti M, Lattanzi P, Tanelli G (1992) Stable isotope geochemistry of carbonates from the Apuane Alps mining district, northern Tuscany, Italy. Eur J Mineral 4:509–520

    Article  Google Scholar 

  • Cortecci G, Lattanzi P, Tanelli G (1985) Barite-iron oxides-pyrite deposits from Apuane Alps, northern Tuscany, Italy. Mem Soc Geol Ital 30:337–345

    Google Scholar 

  • Costagliola P, Benvenuti M, Lattanzi P, Tanelli G (1998) Metamorphogenic barite-pyrite (Pb-Zn-Ag) veins at Pollone, Apuane Alps, Tuscany: vein geometry, geothermobarometry, fluid inclusions and geochemistry. Mineral Petrol 62:29–60

    Article  Google Scholar 

  • Costagliola P, Benvenuti M, Tanelli G, Cortecci G, Lattanzi P (1990) The barite-pyrite-iron oxides deposit of Monte Arsiccio (Apuane Alps): geological setting, mineralogy, fluid inclusions, stable isotope and genesis. Boll Soc Geol Ital 109:267–277

    Google Scholar 

  • Craig JR, Vokes FM (1993) The metamorphism of pyrite and pyritic ores: an overview. Mineral Mag 57:3–18

    Article  Google Scholar 

  • Deditius AP, Reich M (2016) Constraints on the solid solubility of Hg, Tl and Cd in arsenian pyrite. Am Mineral 101:1451–1459

  • Deditius AP, Utsunomiya S, Kesler SE, Reich M, Ewing RC (2011) Trace elements nanoparticles in pyrite. Ore Geol Rev 42:32–46

    Article  Google Scholar 

  • Deditius AP, Utsunomiya S, Renock D, Ewing RC, Ramana CV, Becker U, Kesler SE (2008) A proposed new type of arsenian pyrite: composition, nanostructure and geological significance. Geochim Cosmochim Acta 72:2919–2933

  • Dini A (2003) Ore deposits, industrial minerals and geothermal resources. In: Poli G et alii (eds) Miocene to present plutonism and volcanism in the Tuscan magmatic province (Central Italy). Period Mineral Spec Issue 72:41–52

  • Dini A, Benvenuti M, Costagliola P, Lattanzi P (2001) Mercury deposits in metamorphic settings: the example of Levigliani and Ripa mines, Apuane Alps (Tuscany, Italy). Ore Geol Rev 18:149–167

  • Dini A, Di Vincenzo G, Ruggieri G, Rayner J, Lattanzi PF (2005) Monte Ollasteddu, a new gold discovery in the Variscan basement of Sardinia (Italy): first isotopic (40Ar-39Ar, Pb) and fluid inclusion data. Mineral Deposita 40:337–346

    Article  Google Scholar 

  • Fellin MG, Reiners PW, Brandon MT, Wüthrich E, Balestrieri ML, Molli G (2007) Thermochronologic evidence for exhumational history of the Alpi Apuane metamorphic core complex, northern Apennines. Italy Tectonics 26. doi:10.1029/2006TC002085

  • Galley AG, Hannington M, Jonasson I (2007) Volcanogenic massive sulphide deposits. In: Goodfellow WD (ed) Mineral deposits of Canada: a synthesis of major deposit-types, district metallogeny, the evolution of geological provinces, and exploration methods. Geol Ass Canada Mineral Dep Div, Spec Publ 5:141–161

    Google Scholar 

  • García-Sansegundo J, Martin-Izard A, Gavaldà J (2014) Structural control and geological significance of the Pb-Zn ores formed in the Benasque Pass area (Central Pyrenees) during the post-late Ordovician extensional event of the Gondwana margin. Ore Geol Rev 56:516–527

  • Giannecchini R (2006) Relationship between rainfall and shallow landslides in the southern Apuan Alps (Italy). Nat Hazards Earth Syst Sci 186:357–364

    Article  Google Scholar 

  • Hannington MD, de Ronde CEJ, Petersen S (2005) Sea-floor tectonics and submarine hydrothermal systems. Econ Geol 100:111–141

    Article  Google Scholar 

  • Hein JR, Koschinsky A, Bau M, Manheim FT, Kang J-K, Roberts L (2000) Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton, pp. 239–279

    Google Scholar 

  • Hoffman BA, Knill MD (1996) Geochemistry and genesis of the Lengenbach Pb-Zn-As-Tl-Ba mineralization, Binn Valley, Switzerland. Mineral Deposita 31:319–339

    Article  Google Scholar 

  • Hsu LC, Galli PE (1973) Origin of the scheelite-powellite series of minerals. Econ Geol 68:681–696

    Article  Google Scholar 

  • Huston DL, Sie SH, Suter GF, Cooke DR, Both RA (1995) Trace elements in sulfide minerals from eastern Australian volcanic-hosted massive sulfide deposits; part I, proton microprobe analyses of pyrite, chalcopyrite, and sphalerite, and part II selenium levels in pyrite; comparison with delta 34S values and implications for the source of sulfur in volcanogenic hydrothermal systems. Econ Geol 90:1167–1196

    Article  Google Scholar 

  • Iskowitz JM, Lee JJH, Zeitlin H (1982) Determination of thallium in deep-sea ferromanganese nodules. Mar Mining 3:285–295

  • Karlsson U, Karlsson S, Düker A (2006) The effect of light and iron(II)/iron(III) on the distribution of Tl(I)/Tl(III) in fresh water systems. J Environ Monit 8:634–640

    Article  Google Scholar 

  • Krebs W (1981) The geology of the Meggen ore deposit. In: Wolf KH (ed) Handbook of stratiform and stratabound ore deposits, vol 9. Elsevier, Amsterdam, pp. 509–549

    Google Scholar 

  • Krupp RE, Seward TM (1990) Transport and deposition of metals in the Rotokawa geothermal system, New Zealand. Mineral Deposita 25:73–81

    Article  Google Scholar 

  • Lattanzi P, Benvenuti M, Costagliola P, Tanelli G (1994) An overview on recent research on the metallogeny of Tuscany, with special reference to the Apuane Alps. Mem Soc Geol Ital 48:613–625

    Google Scholar 

  • Lattanzi P, Benvenuti M, Gale N, Hansmann W, Koeppel V, Stos-Gale Z (1997) Pb isotopes data on ore deposits of southern Tuscany. Proceedings of the 1st “F.I.S.T.” Congress, 5–9 October 1997, Bellaria, 123–124

  • Lattanzi P, Hansmann W, Koeppel V, Costagliola P (1992) Source of metals in metamorphic ore-forming processes in the Apuane Alps (NW Tuscany, Italy): constraints by Pb-isotope data. Mineral Petrol 45:217–229

    Article  Google Scholar 

  • Leach DL, Sangster DF, Kelley KD, Large RR, Garven G, Allen CR, Gutzmer J, Walters S (2005) Sediment-hosted lead-zinc deposits: a global perspective. Econ Geol 100:561–607

    Google Scholar 

  • Ludwig KR, Vollmer R, Turi B, Simmons KR, Perna G (1989) Isotopic constraints on the genesis of base-metal ores in southern and Central Sardinia. Eur J Mineral 1:657–666

    Article  Google Scholar 

  • Lustrino M, Duggen S, Rosenberg CL (2011) The central-western Mediterranean: anomalous igneous activity in an anomalous collisional tectonic setting. Earth Sci Rev 104:1–40

    Article  Google Scholar 

  • Mellini M, Orlandi P, Vezzalini G (1986) V-bearing derbylite from the Buca della Vena mine, Apuan Alps, Italy. Mineral Mag 50:328–331

    Article  Google Scholar 

  • Merlino S, Orlandi P (1983) A second occurrence of stibivanite: Buca della Vena mine (Apuan Alps), Italy. Can Mineral 21:159–160

    Google Scholar 

  • Moëlo Y, Orlandi P, Guillot-Deudon C, Biagioni C, Paar W, Evain M (2011) Lead-antimony sulfosalts from Tuscany (Italy). XI. The new mineral species parasterryite, Ag4Pb20(Sb14.5As9.5)Σ24S58, and associated sterryite, Cu(Ag,Cu)3Pb19(Sb,As)22(As–As)S56, from the Pollone mine, Tuscany, Italy. Can Mineral 49:623–638

    Article  Google Scholar 

  • Moresi M, Quagliarella Asciano F (1973) Cobaltite negli skarn della Torre di Rio (Isola d’Elba). Period Mineral 42:173–182

    Google Scholar 

  • Natale P (1974) Relitti di bassa temperatura nelle piriti di alcuni giacimenti della Toscana. Boll Assoc Miner Sudalpina, Anno XI 1-2:1–21

    Google Scholar 

  • Nriagu JO (1998) History, production and uses of thallium. In: Nriagu JO (ed) Thallium in the environment. Wiley-Interscience, London, pp. 1–14

    Google Scholar 

  • Orberger B, Arnold M, Saupé F (1986) Sulfur isotopic studies of the minerals from the Pollone and Monte Arsiccio deposits (SW Apuane Alps, Tuscany, Italy). Contribution to the knowledge of the ore deposits of Tuscany, III. Fortschr Mineral 64:215–226

    Google Scholar 

  • Orlandi P, Biagioni C, Bonaccorsi E, Moëlo Y, Paar WH (2012) Lead-antimony sulfosalts from Tuscany (Italy). XII. Boscardinite, TlPb4(Sb7As2)Σ9S18, a new mineral species from the Monte Arsiccio mine: occurrence and crystal structure. Can Mineral 50:235–251

    Article  Google Scholar 

  • Orlandi P, Biagioni C, Moëlo Y, Bonaccorsi E, Paar WH (2013) Lead-antimony sulfosalts from Tuscany (Italy). XIII. Protochabournéite, ~TlPb2(Sb9-8As1-2)Σ10S17, from the Monte Arsiccio mine: occurrence, crystal structure and relationship with chabournéite. Can Mineral 51:475–494

    Article  Google Scholar 

  • Orlandi P, Moëlo Y, Campostrini I, Meerschaut A (2007) Lead-antimony sulfosalts from Tuscany (Italy). IX. Marrucciite, Hg3Pb16Sb18S46, a new sulfosalt from Buca della Vena mine, Apuan Alps: definition and crystal structure. Eur J Mineral 19:267–279

    Article  Google Scholar 

  • Orlandi P, Pasero M, Duchi G, Olmi F (1997) Dessauite, (Sr,Pb)(Y,U)(Ti,Fe3+)18O38, a new mineral of the crichtonite group from Buca della Vena mine, Tuscany, Italy. Am Mineral 82:807–811

    Article  Google Scholar 

  • Palmer MR, Slack JF (1989) Boron isotopic composition of tourmalines from massive sulfide deposits and tourmalinites. Contrib Mineral Petrol 103:434–451

    Article  Google Scholar 

  • Pandeli E, Bagnoli P, Negri M (2004) The Fornovolasco schists of the Apuan Alps (Northern Tuscany, Italy): a new hypothesis for their stratigraphic setting. Boll Soc Geol Ital 123:53–66

    Google Scholar 

  • Peter ALJ, Viraraghavan T (2005) Thallium: a review of public health and environmental concerns. Environ Int 31:439–501

    Article  Google Scholar 

  • Radtke AS (1985) Geology of the Carlin gold deposit, Nevada, USA. US Geol Surv Prof Pap 1267:241–246

    Google Scholar 

  • Ralph L, Twiss MR (2002) Comparative toxicity of thallium(I), thallium(III) and cadmium(II) to the unicellular alga Chlorella isolated from Lake Erie. Bull Environ Contam Toxicol 68:261–268

    Google Scholar 

  • Rau A, Tongiorgi M (1974) Geologia dei Monti Pisani a sud-est della Valle del Guappero. Mem Soc Geol It 13:227–408

    Google Scholar 

  • Rehkämper M, Frank M, Hein JR, Halliday A (2004) Cenozoic marine geochemistry of thallium deduced from isotopic studies of ferromanganese crusts and pelagic sediments. Earth Planet Sci Lett 219:77–91

    Article  Google Scholar 

  • Rimondi V, Chiarantini L, Lattanzi P, Benvenuti M, Beutel M, Colica A, Costagliola P, Di Benedetto F, Gabbani G, Gray J, Pandeli E, Pattelli G, Paolieri M, Ruggieri G (2015) Metallogeny, exploitation and environmental impact of the Mt. Amiata mercury ore district (Southern Tuscany, Italy). Ital J Geosci 134:323–336

    Article  Google Scholar 

  • Shannon RD (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr A32:751–767

  • Simon G, Huang H, Penner-Hahn JE, Kesler SE, Kao L-S (1999) Oxidation state of gold and arsenic in gold-bearing arsenian pyrite. Am Mineral 84:1071–1079

  • Stacey JS, Kramers JD (1975) Approximation of terrestrial lead isotope evolution by a two-stage model. Earth Planet Sci Lett 26:207–221

    Article  Google Scholar 

  • Stos-Gale Z, Gale NH, Houghton J, Speakman R (1995) Lead isotopes from isotrace laboratory, Oxford: archaeometry database 1, ores from western Mediterranean. Archaeometry 37:407–415

    Article  Google Scholar 

  • Tanelli G, Benvenuti M, Costagliola P, Dini A, Lattanzi P, Maineri C, Mascaro I, Ruggieri G (2001) The iron mineral deposits of Elba Island: state of the art. Ofioliti 26:239–248

    Google Scholar 

  • Todt W, Cliff RA, Hanser A, Hofmann AW (1993) Recalibration of NBS lead standards using a 202Pb–205Pb double spike. Terra Abstr 5:396

    Google Scholar 

  • Vezzoni S, Dini A, Rocchi S (2016) Reverse telescoping in a distal skarn system (Campiglia Marittima, Italy). Ore Geol Rev 77:176–193

    Article  Google Scholar 

  • Vorlicek TP, Kahn MD, Kasuya Y, Helz GR (2004) Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides. Geochim Cosmochim Acta 68:547–556

  • Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239

    Article  Google Scholar 

  • Wilkinson JJ (2014) Sediment-hosted zinc-lead mineralization: processes and perspectives. In: Holland HD, Turekian KK (eds) Geochemistry of mineral deposits. Elsevier, Oxford, pp. 219–249

    Google Scholar 

  • Xiong Y (2007) Hydrothermal thallium mineralization up to 300 °C: a thermodynamic approach. Ore Geol Rev 32:291–313

    Article  Google Scholar 

  • Zhang Z, Zhang B, Chen Y, Zhang X (2000) The Lanmuchang Tl deposit and its environmental geochemistry. Science in China (Series D) 43:50–62

    Article  Google Scholar 

  • Zhou TF, Fan Y, Yuan F, Wu MA, Hou MJ, Voicu G, Hu QH, Zhang QM, Yue SC (2005) A preliminary geological and geochemical study of the Xiangquan thallium deposit, eastern China: the world’s first thallium-only mine. Mineral Petrol 85:243–251

    Article  Google Scholar 

Download references

Acknowledgments

This research received support by Ministero dell’Istruzione, dell’Università e della Ricerca through the project SIR 2014 “THALMIGEN—Thallium: Mineralogy, Geochemistry, and Environmental Hazards,” granted to CB. We are grateful to Davide Franceschelli and Simone Beccari (Museo delle Miniere di Mercurio del Monte Amiata, Santa Fiora, Grosseto, Italy) for providing us with some specimens of pyrite/marcasite from the Monte Amiata Hg district. The paper benefited from the constructive criticism of the two reviewers Artur Deditius and Kalin Kouzmanov and the Editor-in-Chief Bernd Lehmann.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristian Biagioni.

Additional information

Editorial handling: B. Lehmann

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Orazio, M., Biagioni, C., Dini, A. et al. Thallium-rich pyrite ores from the Apuan Alps, Tuscany, Italy:constraints for their origin and environmental concerns. Miner Deposita 52, 687–707 (2017). https://doi.org/10.1007/s00126-016-0697-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-016-0697-1

Keywords

Navigation