Skip to main content
Log in

Tectono-metallogenetic evolution of the Fe–Cu deposit of Dominga, northern Chile

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The Dominga district in northern Chile (2082 Mt at 23.3 % Fe, 0.07 % Cu) shows a spatial and genetic affinity among distinctive structural elements and Fe–Cu-rich paragenetic mineral assemblages. Deep seated, NE-to-E striking structural elements form a right-lateral duplex-like structural system (early structural system, ESS) that cuts a regionally extensive alteration (stage I) zone. The EES system served as a locus and as path for the emplacement of biotite–magnetite alteration/mineralization (stage IIa) as veins and Fe-bearing layers following altered volcano sedimentary strata. NW-striking actinolite–magnetite hydrothermal breccias, coeval with and part of the ESS, include apatite (stage IIb) crystallized at 127 ± 15 Ma (U–Pb, 2σ). The ESS was also the locus of subsequent alteration/mineralization represented by K-feldspar, epidote, and albite (stage IIIa) and Fe–Cu-rich (vermiculite–anhydrite–chalcopyrite, stage IIIb) mineral associations. Shallowly developed, NNE-striking, left-lateral structural elements defining the El Tofo Structural System (ETSS)—probably part of the Atacama Fault System—clearly crosscut the ESS. Minerals associated with alteration/mineralization stage IIIb also occur as veins and as part of hydrothermal breccias of the ETSS, marking the transition from the ESS to ETSS. Molybdenite associated with alteration/mineralization stage IIIb yielded a Re–Os age of 127.1 ± 0.7 Ma (2σ). Both the ESS and ETSS were cut by left-lateral, NW- to E-striking shallowly developed structural elements (Intermediate Structural System, ISS) on which a hematite–calcite assemblage (stage IV) occurs mostly as infill material of veins and fault veins. The ISS is cut by N-striking, left-lateral, and shallowly developed structural elements (Late Structural System, LSS) showing no evidence of alteration/mineralization. Estimated strain and stress fields indicate an overall NW-trending shortening/compression and NE-trending stretching/tension strike-slip regime probably due to oblique subduction during the Mesozoic. However, the orientations of the stress and strain fields calculated for each structural system suggest a back-and-forth rotation pattern during transition from one structural system to the other—as they change between transtension and transpression—and between alteration/mineralization stages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Angelier J (1994) Fault slip analysis and paleostress reconstruction. In: Hancock P (ed) Continental deformation. Pergamon Press, UK, pp. 53–100

    Google Scholar 

  • Arévalo C (1999) The coastal Cordillera-Precordillera boundary in the Copiapó area, northern Chile and the structural setting of the Candelaria Cu-Au ore deposit. Dissertation, Kingston University

  • Arévalo C, Grocott J, Martin W, Pringle M, Taylor G (2006) Structural setting of the Candelaria Fe oxide Cu-Au deposit, Chilean Andes (27°30’S). Econ Geol 101:819–841

    Article  Google Scholar 

  • Arriagada C, Roperch P, Mpodozis C, Fernandez R (2006) Paleomagnetism and tectonics of the southern Atacama Desert (25-28 degrees S), northern Chile. Tectonics 25(4):TC4001

    Article  Google Scholar 

  • Beck M (1998) On the mechanism of crustal block rotation in the Central Andes. Tectonophysics 299:75–92

    Article  Google Scholar 

  • Benavides J, Kyser T, Clark A, Oates C, Zamora R, Tarnovschi R, Castillo B (2007) The Mantoverde iron oxide-copper-gold district, III Región, Chile: the role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization. Econ Geol 102:415–440

    Article  Google Scholar 

  • Bonson C, Grocott J, Rankin A, (1996) A structural model for the development of Fe-Cu mineralization within the Atacama Fault System, (25°00’S-27°15’S), Northern Chile. Third ISAG, St. Malo, France: 671–674

  • Bookstrom A (1977) The magnetite deposits of El Romeral, Chile. Econ Geol 72:1101–1130

    Article  Google Scholar 

  • Brown M, Diaz F, Grocott J (1993) Displacement history of the Atacama fault system 25°-27°S, northern Chile. Geol Soc Am Bull 105:1165–1174

    Article  Google Scholar 

  • Caine J, Evans J, Forster C (1996) Fault zone architecture and permeability structure. Geology 24:1125–1128

    Article  Google Scholar 

  • Cembrano J, Garrido I, Marquardt M (2009) Tectonic setting of IOCG deposits in the Central Andes: Strike-slip-dominated deformation. XII Congreso Geológico Chileno, Santiago: S9_043

  • Coira B, Davidson J, Mpodozis C, Ramos V (1982) Tectonic and magmatic evolution of the Andes of northern Argentina and Chile. Earth-Sci Rev 18:303–332

    Article  Google Scholar 

  • Correa A (2000) Geología del yacimiento Fe-Cu Teresa del Colmo, Región de Antofagasta, Chile. 9th Congreso Geológico Chileno v2: 102–106

  • Cox S, Knackstedt M, Braun J (2001) Principles of structural control on permeability and fluid flow in hydrothermal systems. Rev Econ Geol 14:1–24

    Article  Google Scholar 

  • Creixell C, Arévalo C (2009) Geología del Cuadrángulo El Tofo, Región de Coquimbo. SERNAGEOMIN, Gobierno Regional de Coquimbo, mapa a escala 1:50.000. Santiago

  • Creixell C, Arévalo C, Fanning M (2009) Geochronology of the Cretaceous magmatism from the Coastal Cordillera of north-central Chile (29°15’to 29°30’S): metallogenic implications. XII Congreso Geológico Chileno, Santiago

  • Doblas M (1998) Slickenside kinematic indicators. Tectonophysics 295:187–197

    Article  Google Scholar 

  • Espinoza S (1984) Le rôle du Crétacé inférieur dans la métallogénèse de la ceinture ferrifère d’Atacama-Coquimbo, Chili. Dissertation, Université Pierre et Marie Curie, Paris

  • Espinoza S (1990) The Atacama-Coquimbo ferriferous belt, northern Chile. In: Fontboté L, Amstutz G, Cardozo M, Cedillo E, Frutos J (eds) Stratabound ore deposits in the Andes. Springer –Verlag, Berlin, pp. 353–364

    Chapter  Google Scholar 

  • Federico L, Crispini L, Capponi G (2010) Fault-slip analysis and transpressional tectonics: a study of Paleozoic structures in northern Victoria land, Antarctica. J Struct Geol 32:667–684

    Article  Google Scholar 

  • Forsythe R, Chisholm L (1994) Paleomagnetic and structural constrains on the rotation in the northern Chilean coast ranges. J S Am Earth Sci 7:279–295

    Article  Google Scholar 

  • Geijer P (1931) The iron ores of the Kiruna type. Sveriges Geologiska Undersökning C367, 39 p

  • Gelcich S, Davis D, Spooner T (2005) Testing the apatite-magnetite geochronometer: U-Pb and 40Ar/39Ar geochronology of plutonic rocks, massive magnetite-apatite tabular bodies, and IOCG mineralization in northern Chile. Geochim Cosmochim Acta 69(13):3367–3384

    Article  Google Scholar 

  • Griffin W, Powell W, Pearson N, O'Reilly S (2008) GLITTER: data reduction software for laser ablation ICP-MS. In: Sylvester P. (ed), Laser Ablation–ICP–MS in the Earth Sciences. Mineralogical Association of Canada Short Course Series Volume 40 (Appendix 2): 204–207

  • Grocott J, Taylor G (2002) Magmatic arc fault system, deformation partitioning and emplacement of granitic complexes in the coastal cordillera, north Chilean Andes (25°30’S to 27°00’S). J Geol Soc Lond 159:425–442

    Article  Google Scholar 

  • Holdsworth R, van Diggelen E, Spiers C, de Bresser J, Walker R, Bowen L (2011) Fault rocks from the SAFOD core samples: implications for weakening at shallow depths along the San Andreas fault, California. J Struct Geol 33:132–144

    Article  Google Scholar 

  • Marrett R, Allmendinger RW (1990) Kinematic analysis of fault-slip data. Journal of Structural Geology 12: 973–986. Software available at http://www.geo.cornell.edu/geology/faculty/RWA/ programs/faultkin.html

  • Marschik R, Fontboté L (2001) The Candelaria-Punta del Cobre iron oxide Cu-Au (−Zn-Ag) deposits, Chile. Econ Geol 96:179–1826

    Google Scholar 

  • Marschik R, Singer BS, Munizaga F, Tassinari C, Moritz R, Fontboté L (1997) Age of Cu (−Fe)-Au mineralization and thermal evolution of the Punta del Cobre district, Chile. Mineral Deposita 32:531–546

    Article  Google Scholar 

  • Marschik R, Leveille RA, Martin W (2000) La Candelaria and the Punta del Cobre district, Chile: early cretaceous iron oxide Cu-Au(−Zn-Ag) mineralization. In: Porter TM (ed) Hydrothermal iron-oxide copper-gold & related deposits: a global perspective. Australian Mineral Foundation, Adelaide, pp. 163–175

    Google Scholar 

  • Mathur RD, Marschik R, Ruiz J, Munizaga F, Martin W (2002) Age of mineralization of the Candelaria Iron oxide Cu-Au deposit, and the origin of the Chilean iron belt based on Re-Os isotopes. Econ Geol 97:59–71

    Article  Google Scholar 

  • Ménard J (1986) Un modèle métasomatique pour les gisements de la Ceinture de fer du Chili. Académie des Sciences [Paris] Comptes Rendus des Séances.II 302: 775–778

  • Mpodozis C, Ramos VA (1990) The Andes of Chile and Argentina. In: Ericksen GE, Pinochet MTC, Reinemund JA (eds) Geology of the Andes and its relation to hydrocarbon and mineral resources. Circum-Pacific Council for Energy and Mineral Resources, Houston, Texas, pp. 59–90

    Google Scholar 

  • Nyström JO, Henríquez F (1994) Magmatic features of iron ores of the Kiruna type in Chile and Sweden: ore textures and magnetite geochemistry. Econ Geol 89:820–839

    Article  Google Scholar 

  • Osterman C (1997) Mineralogical notes on the Productora project, Region III, Chile. Unpublished report, General Minerals Corporation, May 1997, 8 pages

  • Otsubo M, Yamaji A (2006) Improved resolution of the multiple inverse method by eliminating erroneous solutions. Comput Geosci 32:1221–1227

    Article  Google Scholar 

  • Oyarzún J, Frutos J (1984) Tectonic and petrological frame of the cretaceous iron deposits of North Chile. Mining Geology 34:21–31

    Google Scholar 

  • Park CF Jr (1972) The iron ore deposits of the Pacific basin. Econ Geol 67:339–349

    Article  Google Scholar 

  • Passchier CW, Trouw RA (2005) Microtectonics. Springer-Verlag, Berlin-Heilderberg, 366 pp

  • Pearce NJG, Perkins WT, Westgate JA, Gorton MP, Jackson SE, Neal CR, Chenery SP (1997) A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. Geostandard Newslett 21:115–144

    Article  Google Scholar 

  • Petit J (1987) Criteria for the sense of movement on fault surfaces in the brittle rocks. J Struct Geol 9:597–608

    Article  Google Scholar 

  • Ray GE, Dick LA (2002) The Productora prospect in North-Central Chile: an example of an intrusion related, Candelaria type Fe-Cu-Au hydrothermal system. In: Porter TM (ed) Hydrotermal Iron Oxide Copper-Gold & Related Deposits: a global perspective, vol 2. PGC Publishing, Adelaide, Australia, pp. 131–151

    Google Scholar 

  • Ritz J (1994) Determining the slip vector by graphical construction: use of a simplified representation of the stress tensor. J Struct Geol 16(5):737–741

    Article  Google Scholar 

  • Rojas C, Beck M, Burmester R, Cembrano J, Hervé F (1994) Paleomagnetism of the mid-Tertiary Ayacara Formation, southern Chile: counterclockwise rotation in a dextral shear zone. J S Am Earth Sci 7:45–56

    Article  Google Scholar 

  • Roperch P, Sempere T, Macedo O, Arriagada C, Fornari M, Tapia C, Garcia M, Laj C (2006) Counterclockwise rotation of late Eocene-Oligocene fore-arc deposits in southern Peru and its significance for oroclinal bending in the Central Andes. Tectonics 25:TC3010

    Article  Google Scholar 

  • Ruiz C, Peebles F (1988) Geología, distribución y génesis de los yacimientos metalíferos chilenos. Editorial Universitaria, Santiago, 334 pp

  • Ruiz C, Aguirre L, Corvalán J, Klohn C, Klohn E, Levi B (1965) Geología y yacimientos metalíferos de Chile: Instituto de Investigaciones Geológicas [Chile], 386 p

  • Scheuber E, Andriessen P (1990) The kinematic and geodynamic significance of the Atacama fault zone, northern Chile. J Struct Geol 12:243–250

    Article  Google Scholar 

  • Scheuber E, González G (1999) Tectonics of the Jurassic-Early Cretaceous arc of the north Chilean Coastal Cordillera (22°-26°S): a story of crustal deformation along a convergent plate boundary. Tectonics 18:895–910

    Article  Google Scholar 

  • Scholz C (2002) The Mechanics of Earthquakes and Faulting. Cambridge Press, second edition, Cambridge, UK, 470 pp

  • Selby D, Creaser R (2001) Re-Os geochronology and systematics in molybdenite from the Endako porphyry molybdenum deposit, British Columbia, Canada. Econ Geol 96:197–204

    Article  Google Scholar 

  • Sibson RH (1987) Earthquake rupturing as a mineralizing agent in hydrothermal systems. Geology 15:701–704

    Article  Google Scholar 

  • Sillitoe RH (2003) Iron oxide-copper gold deposits: an Andean view. Mineral Deposita 38:787–812

    Article  Google Scholar 

  • Sippel J, Scheck-Wenderoth M, Reicherter K, Mazur S (2009) Paleostress states at the south-western margin of the central European Basin system—application of fault slip analysis to unravel polyphase deformation pattern. Tectonophysics 470:129–146

    Article  Google Scholar 

  • Sperner B, Zweigel P (2010) A plea for more caution in fault-slip analysis. Tectonophysics 482:29–41

    Article  Google Scholar 

  • Taylor G, Grocott J, Pope A, Randall D (1998) Mesozoic faults systems, deformation and fault block rotation in the Andean forearc: a crustal-scale strike-slip duplex of the coastal cordillera of northern Chile. Tectonophysics 299:93–109

    Article  Google Scholar 

  • Taylor G, Grocott J, Dashwood B, Gipson M, Arevalo C (2007) Implications for crustal rotation and tectonic evolution in the Central Andes fore arc: new paleomagnetic results from the Copiapó region of northern Chile, 26°-28°S. Journal of Geophysical Research-Solid Earth 112:B01102

    Google Scholar 

  • Thomson SN, Gehrels GE, Ruiz J, Buchwaldt R (2012) Routine low-damage U-Pb dating of apatite using laser ablation-multicollector-ICPMS. Geochem Geophys Geosyst 13:Q0AA21. doi:10.1029/2011GC003928

    Article  Google Scholar 

  • Ullrich TD, Clark AH (1999) The Candelaria copper-gold deposit, region III, Chile: paragenesis, geochronology and fluid composition. In: Stanley CJ et al. (eds) Mineral deposits: processes to processing. Balkema, Rotterdam, pp. 201–204

    Google Scholar 

  • Veloso E, Anma R, Yamaji A (2009) Heterogeneous paleostress regimes recorded on the Taitao Ophiolite (Southern Chile), implications for ophiolite emplacement and effects of the subduction of the Chile ridge system. Andean Geol 36(1):3–16

    Google Scholar 

  • Veloso E, Neira S, Siña A, Vivanco M, Cembrano J, Heuser G and Garrido I (2015a) Etapas de alteración/mineralización en el depósito de Dominga (Fe-Cu), Región de Coquimbo. XIV Congreso Geológico Chileno, La Serena, Chile.

  • Veloso E, Gomila R, Cembrano J, González R, Jensen E, Arancibia G (2015b) Stress fields recorded on large-scale strike-slip systems: effects on the tectonic evolution of crustal slivers during oblique subduction. Tectonophysics 664:244–255

    Article  Google Scholar 

  • Vila T, Lindsay N, Zamora R (1996) Geology of the Manto Verde copper deposit, northern Chile: a specularite-rich, hydrothermal-tectonic breccia related to the Atacama fault zone. Society of Economic Geology Special Publication 5:157–170

    Google Scholar 

  • Vivallo W (2009) Yacimientos de óxidos de Hierro-Cobre-Oro en Chile. XII Congreso Geológico Chileno: s11_060

  • Vivallo W, Henriquez F, Espinoza S (1995) Metasomatismo y alteración hidrotermal en el distrito ferrífero Cerro Negro Norte, Copiapó, Chile. Revista Geológica de Chile 22:75–88

    Google Scholar 

  • Vivallo W, Díaz A, Jorquera R (2008) Yacimientos metalíferos de la región de Atacama, Escala 1:500.000. Carta Geológica de Chile, Serie Recursos Minerales y Energéticos (n.27). SERNAGEOMIN, Santiago, 72 pp

  • Whitney D, Evans B (2010) Abbreviations for names of rock-forming minerals. Am Mineral 95:185–187

    Article  Google Scholar 

  • Yamaji A (2000) The multiple inverse method: a new technique to separate stresses from heterogeneous fault-slip data. J Struct Geol 22:441–452 Software available at http://www.kueps.kyoto-u.ac.jp/~web-bs/tsg/software/mim/

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank all personnel at Dominga for their valuable help during field campaigns. Special thanks to M. Vivanco for his comments and suggestions in the field that helped to unravel the complex tectono-metallogenic processes at Dominga. Also, we would like to thank Mr. M. Marquardt, Ms. P. Pérez-Flores and Ms. I. Santibañez for their help during mapping and to Mr. R. Gomila for his help during geochronology laboratory procedures. Comments made by Dr. B. Lehmann, Dr. T. Bissig, Dr. M. Barton, and an anonymous reviewer helped to improve the quality of the manuscript. This work was supported by a joint project venture between Andes Iron SpA and the Direction of Research and Science (DICTUC) of the Pontificia Universidad Católica de Chile, and it is a contribution to the Millennium Science Initiative (MSI) through Millennium Nucleus for Metal Tracing along Subduction grant NC130065.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Veloso.

Additional information

Editorial handling: T. Bissig

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Veloso, E., Cembrano, J., Arancibia, G. et al. Tectono-metallogenetic evolution of the Fe–Cu deposit of Dominga, northern Chile. Miner Deposita 52, 595–620 (2017). https://doi.org/10.1007/s00126-016-0682-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-016-0682-8

Keywords

Navigation