Skip to main content
Log in

Genetic constraints from paleomagnetic dating for the Aliva zinc–lead deposit, Picos de Europa Unit, northern Spain

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

Aliva has been the most productive Zn–Pb mine in the Picos de Europa Mississippi Valley-type (MVT) district of Spain’s Cantabrian Zone. The mineralisation is hosted in a Variscan thrust sheet by strata of the Late Carboniferous (~309 ± 3 Ma) Picos de Europa limestone–shale formation. Paleomagnetic and rock magnetic analyses of 194 specimens from 23 sites show that the sphalerite–galena–dolomite ore carries a stable characteristic remanent magnetisation (ChRM) in magnetite–titanomagnetite with minor pyrrhotite. Uncorrected for bedding tilt, the ChRM’s direction is declination (D) = 347.2°, inclination (I) = 61.8° (N = 20 sites, k = 75.4, α 95 = 4.3°). A negative paleomagnetic fold test shows that the MVT mineralisation is in one or more carbonate olistoliths of the Picos de Europa Formation in shales of the overlying Late Carboniferous Lebeña Formation and that the ChRM entirely postdates Variscan orogenic deformation. No plausible tilt correction of the ChRM’s paleopole supports a previously proposed late Variscan (Permian–Triassic) age for the genesis of the MVT mineralisation at Aliva. The paleopole does support an age of 112 ± 8 Ma for the hydrothermal dolomitisation and MVT mineralisation event with a subsequent increase in bedding tilt by ~10° NNE during the Oligocene–Miocene Pyrenean (Alpine) Orogeny. The 112 ± 8 Ma Aptian–Albian age ties ore genesis to the 35° ± 2 counterclockwise rotation of the Iberian peninsula relative to stable Europe and strongly favours an origin in the rift’s flank associated with rift hydrothermal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alonso J, Alvarez-Marrón J, Aller J, Bastida F, Farias P, Marcos A, Marquinez J, Pérez-Estaun A, Pulgar J (1992) Eatructura de La Zona Cantábrica In: Gutierrez-Marco J, Saavedra J, Rábago I (eds) Paleozóico Inferior de Ibero-América. Universidad de Extremadura, pp 423–434

  • Alonso J, Pulgar J, García-Ramos J, Barba P (1996) Tertiary basins and Alpine tectonics in the Cantabrian Mountains (NW Spain). In: Friend D, Dabrio C (eds) Tertiary basins of Spain: the stratigraphic record of crustal kinematics. Cambridge University Press, Cambridge, pp 214–227

    Chapter  Google Scholar 

  • Alonso JL, Vallaure AM, Rodríguez ÁS (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: the León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol Acta 7:451–473

    Article  Google Scholar 

  • Alvarez-Marron J, Perez-Estaun A (1988) Thin skinned tectonics in the Ponga region (Cantabrian Zone, NW Spain). Geol Rundsch 77:539–550

    Article  Google Scholar 

  • Bailey R, Halls H (1984) Estimate of confidence in paleomagnetic directions derived from mixed remagnetization circle and direct observational data. J Geophys 54:174–182

    Google Scholar 

  • Barbanson L, Touray J, Saulas D, Vadala P (1983) Distribution à différentes échelles et chronologie relative des carbonates de l'Aptien de la Province de Santander: relation entre auréole ferrifère et minéralisations Zn–Pb du type Réocin. Chron Rech Min 473:39–48

    Google Scholar 

  • Brime C, García López S, Bastida F, Valín ML, Sanz López J, Aller J (2001) Transition from diagenesis to metamorphism near the front of the Variscan regional metamorphism (Cantabrian Zone, northwestern Spain). J Geol 109:363–379

    Article  Google Scholar 

  • Bullard E, Everett JE, Smith AG (1965) The fit of the continents around the Atlantic. Philos Trans R Soc Lond A Math Phys Sci 258:41–51

    Article  Google Scholar 

  • Butler RF (1992) Paleomagnetism: magnetic domains to geologic terranes. Blackwell Scientific Publications, Boston

    Google Scholar 

  • Carey SW (1958) The tectonic approach to continental drift. In: Carey SW (ed) Continental drift. University of Tasmania, Hobart, pp 177–355

    Google Scholar 

  • Colmenero JR, Suárez-Ruiz I, Fernández-Suárez J, Barba P, Llorens T (2008) Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian Mountains, Northern Spain. Int J Coal Geol 76:187–204

    Article  Google Scholar 

  • Díaz J, Gallart J, Gaspà O, Ruiz M, Córdoba D (2008) Seismicity analysis at the < i > Prestige</i > oil-tanker wreck area (Galicia Margin, NW of Iberia). Mar Geol 249:150–165

    Article  Google Scholar 

  • Dunlop DJ, Özdemir Ö (1997) Rock magnetism: fundamentals and frontiers. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Espina RG, Alonso JL, Pulgar JA (1996) Growth and propagation of buckle folds determined from syntectonic sediments (the Ubierna Fold Belt, Cantabrian Mountains, N Spain). J Struct Geol 18:431–441

    Article  Google Scholar 

  • Fernández-Suárez J, Dunning G, Jenner G, Gutiérrez-Alonso G (2000) Variscan collisional magmatism and deformation in NW Iberia: constraints from U–Pb geochronology of granitoids. J Geol Soc 157:565–576

    Article  Google Scholar 

  • Fisher RA (1953) Dispersion on a sphere. Proc R Soc Lond A217:295–305

    Article  Google Scholar 

  • Garcia-Lopez S, Bastida F, Aller J, Sanz-Lopez J, Marin JA, Blanco-Ferrera S (2013) Tectonothermal evolution of a major thrust system: the Esla–Valsurbio unit (Cantabrian Zone, NW Spain). Geol Mag 150:1047–1061

    Article  Google Scholar 

  • Garven G, Appold MS, Toptygina VI, Hazlett TJ (1999) Hydrogeologic modeling of the genesis of carbonate-hosted lead-zinc ores. Hydrogeol J 7:108–126

    Article  Google Scholar 

  • Gasparrini M, Bechstädt T, Boni M (2006) Massive hydrothermal dolomites in the southwestern Cantabrian Zone (Spain) and their relation to the Late Variscan evolution. Mar Pet Geol 23:543–568

    Article  Google Scholar 

  • Gómez-Fernández F, Both R, Mangas J, Arribas A (2000) Metallogenesis of Zn–Pb carbonate-hosted mineralization in the southeastern region of the Picos de Europa (central northern Spain) province: geologic, fluid inclusion, and stable isotope studies. Econ Geol 95:19–40

    Article  Google Scholar 

  • Gong Z, Langereis C, Mullender T (2008) The rotation of Iberia during the Aptian and the opening of the Bay of Biscay. Earth Planet Sci Lett 273:80–93

    Article  Google Scholar 

  • Gong Z, van Hinsbergen D, Dekkers M (2009a) Diachronous pervasive remagnetization in northern Iberian basins during Cretaceous rotation and extension. Earth Planet Sci Lett 284:292–301

    Article  Google Scholar 

  • Gong Z, van Hinsbergen DJ, Vissers RL, Dekkers MJ (2009b) Early Cretaceous syn-rotational extension in the Organyà basin—new constraints on the palinspastic position of Iberia during its rotation. Tectonophysics 473:312–323

    Article  Google Scholar 

  • Gradstein F, Ogg J (2004) Geologic time scale 2004—why, how, and where next! Lethaia 37:175–181

    Article  Google Scholar 

  • Grandia F, Cardellach E, Canals À, Banks DA (2003) Geochemistry of the fluids related to epigenetic carbonate-hosted Zn–Pb deposits in the Maestrat basin, Eastern Spain: fluid inclusion and isotope (Cl, C, O, S, Sr) evidence. Econ Geol 98:933–954

    Article  Google Scholar 

  • Grobe RW, Alvarez-Marrón J, Glasmacher UA, Menéndez-Duarte R (2010) Low-temperature exhumation history of Variscan-age rocks in the western Cantabrian Mountains (NW Spain) recorded by apatite fission-track data. Tectonophysics 489:76–90

    Article  Google Scholar 

  • Hines F (1985) Sedimentation and tectonics in north-west Santander. 6th European Regional Meeting, Excursion Guidebook, International Association of Sedimentologists, pp 371–398

  • Julivert M (1971) Décollement tectonics in the Hercynian Cordillera of northwest Spain. Am J Sci 270:1–29

    Article  Google Scholar 

  • Kirschvink JL (1980) The least squares line and plane and the analysis of palaeomagnetic data. Geophys J Roy Astron Soc 62:699–718

    Article  Google Scholar 

  • Lapponi F, Bechstädt T, Boni M, Banks DA, Schneider J (2014) Hydrothermal dolomitization in a complex geodynamic setting (Lower Palaeozoic, northern Spain). Sedimentology 61:411–443

    Article  Google Scholar 

  • Leach DL, Bradley D, Lewchuk MT, Symons DT, de Marsily G, Brannon J (2001) Mississippi Valley-type lead–zinc deposits through geological time: implications from recent age-dating research. Miner Depos 36:711–740

    Article  Google Scholar 

  • Leach D, Sangster D, Kelley K, Large RR, Garven G, Allen C, Gutzmer J, Walters S (2005) Sediment-hosted lead–zinc deposits: a global perspective. Econ Geol 100:561–607

    Google Scholar 

  • Leach DL, Bradley DC, Huston D, Pisarevsky SA, Taylor RD, Gardoll SJ (2010) Sediment-hosted lead–zinc deposits in Earth history. Econ Geol 105:593–625

    Article  Google Scholar 

  • Lewchuk M, Symons D (1995) Age and duration of Mississippi Valley-type ore-mineralizing events. Geology 23:233–236

    Article  Google Scholar 

  • López-Fernández C, Pulgar J, Gallart J, Glez-Cortina J, Díaz J, Ruiz M (2004) Sismicidad y tectónica en el área de Becerreá-Triacastela. Lugo, NO España, Geogaceta, pp 51–54

    Google Scholar 

  • Marquínez J (1978) Estudio geológico del sector SE de los Picos de Europa (Cordillera Cantábrica, NW de España). Trab Geol 10:295–317

    Google Scholar 

  • Marquínez J (1989) Mapa geológico de la Región del Cuera y Picos de Europa (Cordillera Cantábrica, NW de Espana). Trab Geol 18:137–144

    Google Scholar 

  • Martínez-García E (1981) El Paleozoico de la Zona Cantábrica Orienta (Noroeste de España). Trab Geol 11:94–129

    Google Scholar 

  • McFadden PL, Lowes FJ (1981) The discrimination of mean directions drawn from Fisher distributions. Geophys J Roy Astron Soc 67:19–33

    Article  Google Scholar 

  • Merino-Tomé OA, Bahamonde JR, Colmenero JR, Heredia N, Villa E, Farias P (2009) Emplacement of the Cuera and Picos de Europa imbricate system at the core of the Iberian–Armorican arc (Cantabrian zone, north Spain): new precisions concerning the timing of arc closure. Geol Soc Am Bull 121:729–751

    Article  Google Scholar 

  • Monseur G (1968) Synthèse des connaissances actuelles sur le gisement stratiforme de Reocin (Province de Santander, Espagne) Université de Liège, Laboratoires de Céologie de la Faculté des Sciences appliquées

  • Olivet J (1996) Kinematics of the Iberian Plate. Bull Centres Rech Explor 20:131–195

    Google Scholar 

  • Pastor-Galán D, Gutiérrez-Alonso G, Fernández-Suárez J, Murphy JB, Nieto F (2013) Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian Zone. Lithos 182:211–228

    Article  Google Scholar 

  • Pastor-Galán D, Martín-Merino G, Corrochano D (2014) Timing and structural evolution in the limb of an orocline: the Pisuerga–Carrión Unit (southern limb of the Cantabrian Orocline, NW Spain). Tectonophysics 622:110–121

    Article  Google Scholar 

  • Pérez Estaún A, Bastida F, Alonso JL, Marquínez J, Aller J, Alvarez Marrón J, Marcos A, Pulgar J (1988) A thin skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero Armorican Arc). Tectonics 7:517–537

    Article  Google Scholar 

  • Pfaff K, Hildebrandt LH, Leach DL, Jacob DE, Markl G (2010) Formation of the Wiesloch Mississippi Valley-type Zn–Pb–Ag deposit in the extensional setting of the Upper Rhinegraben, SW Germany. Miner Depos 45:647–666

    Article  Google Scholar 

  • Rodríguez-Fernández L, Heredia N (1990) Palentine zone structure. In: Dallmeyer R, Martínez García E (eds) Pre-Mesozoic geology of Iberia. Springer-Verlag, Berlin, pp 69–71

    Google Scholar 

  • Rosenbaum G, Lister GS, Duboz C (2002) Relative motions of Africa, Iberia and Europe during Alpine orogeny. Tectonophysics 359:117–129

    Article  Google Scholar 

  • Schneider J, Bechstädt T (2003) Multiple fluid flow events in the Cantabrian Zone, Northwest Spain AAPG Search and Discovery Article #30012 AAPG Helberg Conference, May 14–18. Palermo (Italy), pp 1–5

  • Sibuet JC, Srivastava SP, Spakman W (2004) Pyrenean orogeny and plate kinematics. J Geophys Res 109:B08104

    Google Scholar 

  • Soto R, Casas-Sainz AM, Villalaín JJ, Oliva-Urcia B (2007) Mesozoic extension in the Basque–Cantabrian basin (N Spain): contributions from AMS and brittle mesostructures. Tectonophysics 445:373–394

    Article  Google Scholar 

  • Soto R, Casas-Sainz AM, Villalaín JJ (2011) Widespread Cretaceous inversion event in northern Spain: evidence from subsurface and palaeomagnetic data. J Geol Soc 168:899–912

    Article  Google Scholar 

  • Srivastava S, Roest W, Kovacs L, Oakey G, Levesque S, Verhoef J, Macnab R (1990) Motion of Iberia since the Late Jurassic: results from detailed aeromagnetic measurements in the Newfoundland Basin. Tectonophysics 184:229–260

    Article  Google Scholar 

  • Srivastava S, Sibuet J-C, Cande S, Roest W, Reid ID (2000) Magnetic evidence for slow seafloor spreading during the formation of the Newfoundland and Iberian margins. Earth Planet Sci Lett 182:61–76

    Article  Google Scholar 

  • Symons D, Sangster D, Leach D (1996) Paleomagnetic dating of Mississippi Valley-type Pb–Zn–Ba deposits In: Sangster D (ed) Carbonate-hosted lead deposits: Society of Economic Geologists Special Publication, pp 515–526

  • Symons DTA, Lewchuk MT, Kawasaki K, Velasco F, Leach DL (2009) The Reocín zinc–lead deposit, Spain: paleomagnetic dating of a late Tertiary ore body. Miner Depos 44:867–880. doi:10.1007/s00126-009-0253-3

    Article  Google Scholar 

  • Tauxe L (2010) Essentials of paleomagnetism. Univ. of California Press

  • Torsvik TH, Van der Voo R, Preeden U, Mac Niocaill C, Steinberger B, Doubrovine PV, van Hinsbergen DJJ, Domeier M, Gaina C, Tohver E, Meert JG, McCausland PJA, Cocks LRM (2012) Phanerozoic polar wander, palaeogeography and dynamics. Earth-Sci Rev 114:325–368

    Article  Google Scholar 

  • Vadala P, Touray J, García-Iglesias J, Ruiz F (1981) Nouvelles données sur le gisement de Reocin (Santander, Espagne). Chron Rech Min 462:43–59

    Google Scholar 

  • Van der Voo R (1969) Paleomagnetic evidence for the rotation of the Iberian Peninsula. Tectonophysics 7:5–56

    Article  Google Scholar 

  • Velasco F, Tornos F (2013) El yacimiento mineral de El Soplao - La Florida In: Rosales I (ed) Avances en la investigacinón geológica de la Cueva del Soplao y su entorno. Informes Técnicos, IGME, pp 87–101

  • Velasco F, Herrero JM, Yusta I, Alonso JA, Seebold I, Leach D (2003) Geology and geochemistry of the Reocín zinc–lead deposit, Basque–Cantabrian basin, Northern Spain. Econ Geol 98:1371–1396

    Article  Google Scholar 

  • Watson GS, Enkin RJ (1993) The fold test in paleomagnetism as a parameter estimation problem. Geophys Res Lett 20:2135–2137

    Article  Google Scholar 

  • Weil A, Gutierrez-Alonso G, Conan J (2010) New time constraints on lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: a palaeomagnetic study of earliest Permian rocks from Iberia. J Geol Soc 167:127–143

    Article  Google Scholar 

  • Weil AB, Gutiérrez-Alonso G, Johnston S, Pastor-Galán D (2013) Kinematic constraints on buckling a lithospheric-scale orocline along the northern margin of Gondwana: a geologic synthesis. Tectonophysics 582:25–49

    Article  Google Scholar 

  • Zamarreño I, Julivert M (1967) Estratigrafía del Cámbrico del oriente de Asturias y estudio petrográfico de las facies carbonatadas. Trab Geol 1:135–165

    Google Scholar 

  • Zijderveld JDA (1967) A.C. demagnetization of rocks: analysis of results. In: Collinson DW, Creer KM, Runcorn SK (eds) Methods in paleomagnetism. Elsevier, Amsterdam, The Netherlands, pp 254–286

    Google Scholar 

Download references

Acknowledgments

Amanda Grossi and Kyle Prestanski are thanked gratefully for their careful preparation and measurement of the specimens. We thank our Reviewers, D.F. Sangster, D. Pastor-Galán and “anonymous” and the Associate Editor, R. Romer, and especially the Editor, G. Beaudoin, for their careful reviews and helpful advice for improving this paper. We also thank the Picos de Europa National Park Authority for permission to collect rock samples in the park and to access the mine site. Funding for this research was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC Discovery Grant No. 7834-05 to D.T.A.S.) and by the DGI-MINECO project GCL-2011-245-46.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David T. A. Symons.

Additional information

Editorial handling: G. Beaudoin and R.L. Romer

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PDF 926 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Symons, D.T.A., Tornos, F., Kawasaki, K. et al. Genetic constraints from paleomagnetic dating for the Aliva zinc–lead deposit, Picos de Europa Unit, northern Spain. Miner Deposita 50, 953–966 (2015). https://doi.org/10.1007/s00126-015-0579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-015-0579-y

Key words

Navigation