Skip to main content
Log in

Effects of the quantitative trait locus qPss3 on inhibition of photoperiod sensitivity and resistance to stalk rot disease in maize

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

We identified a quantitative trait locus, qPss3 , and fine-mapped the causal locus to a 120-kb interval in maize. This locus inhibits the photoperiod sensitivity caused by ZmCCT9 and ZmCCT10 , resulting in earlier flowering by 2 ~ 4 days without reduction in stalk-rot resistance in certain genotypes.

Abstract

Photoperiod sensitivity is a key factor affecting the adaptation of maize (Zea mays L.) to high-latitude growing areas. Although many genes associated with flowering time have been identified in maize, no gene that inhibits photoperiod sensitivity has been reported. In our previous study, we detected large differences in photoperiod sensitivity among maize inbred lines with the same photoperiod-sensitive allele at the ZmCCT10 locus. Here, we used two segregating populations with the same genetic backgrounds but different ZmCCT10 alleles to perform quantitative trait locus (QTL) analysis. We identified a unique QTL, qPss3, on chromosome 3 in the population carrying the sensitive ZmCCT10 allele. After sequential fine-mapping, we eventually delimited qPss3 to an interval of ~ 120 kb. qPss3 behaved as a dominant locus and caused earlier flowering by 2–4 days via inhibiting ZmCCT10-induced photoperiod sensitivity under long-day conditions. qPss3 also inhibited the photoperiod sensitivity induced by another flowering-related gene, ZmCCT9. For application in agriculture, an F1 hybrid heterozygous at both qPss3 and ZmCCT10 loci constitutes an optimal allele combination, showing high resistance to stalk rot without a significant delay in flowering time. Moreover, qPss3 is of great value in regulating the flowering time of tropical maize grown at high-latitude regions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abu P, Badu-Apraku B, Ifie BE, Tongoona P, Melomey LD, Offei SK (2021) Genetic diversity and inter-trait relationship of tropical extra-early maturing quality protein maize inbred lines under low soil nitrogen stress. PLoS One 16(6):e0252506

    CAS  PubMed  PubMed Central  Google Scholar 

  • Afolabi CG, Ojiambo PS, Ekpo EJA, Menkir A, Bandyopadhyay R (2008) Novel sources of resistance to Fusarium stalk rot of maize in tropical Africa. Plant Dis 92(5):772–780

    CAS  PubMed  Google Scholar 

  • Baloch N, Liu WM, Hou P, Ming B, Xie RZ, Wang KR, Liu YE, Li SK (2021) Effect of latitude on maize kernel weight and grain yield across China. Agron J 113(2):1172–1182

    Google Scholar 

  • Beadle GW (1981) Origin of corn—pollen evidence. Science 213(4510):890–892

    CAS  PubMed  Google Scholar 

  • Chen Q, Song J, Du WP, Xu LY, Jiang Y, Zhang J, Xiang XL, Yu GR (2017) Identification, Mapping, and Molecular Marker Development for Rgsr8.1: A New Quantitative Trait Locus Conferring Resistance to Gibberella Stalk Rot in Maize (Zea mays L.). Frontiers in Plant Science 8:1355

    PubMed  PubMed Central  Google Scholar 

  • Coles ND, McMullen MD, Balint-Kurti PJ, Pratt RC, Holland JB (2010) Genetic control of photoperiod sensitivity in maize revealed by joint multiple population analysis. Genetics 184(3):799-U301

    CAS  PubMed  PubMed Central  Google Scholar 

  • Decaestecker W, Buono RA, Pfeiffer ML, Vangheluwe N, Jourquin J, Karimi M, Van Isterdael G, Beeckman T, Nowack MK, Jacobs TB (2019) CRISPR-TSKO: a technique for efficient mutagenesis in specific cell types, tissues, or organs in arabidopsis. Plant Cell 31(12):2868–2887

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1(4):19–21

    CAS  Google Scholar 

  • Doebley J (1990) Molecular evidence for gene flow among Zea species—genes transformed into maize through genetic-engineering could be transferred to its wild relatives, the teosintes. Bioscience 40(6):443–448

    Google Scholar 

  • Ducrocq S, Giauffret C, Madur D, Combes V, Dumas F, Jouanne S, Coubriche D, Jamin P, Moreau L, Charcosset A (2009) Fine mapping and haplotype structure analysis of a major flowering time quantitative trait locus on maize chromosome 10. Genetics 183(4):1555–1563

    CAS  PubMed  PubMed Central  Google Scholar 

  • Giauffret C, Lothrop J, Dorvillez D, Gouesnard B, Derieux M (2000) Genotype x environment interactions in maize hybrids from temperate or highland tropical origin. Crop Sci 40(4):1004–1012

    Google Scholar 

  • Goodman MM (1988) The history and evolution of maize. Crit Rev Plant Sci 7(3):197–220

    Google Scholar 

  • Hittalmani S, Huang N, Courtois B, Venuprasad R, Shashidhar HE, Zhuang JY, Zheng KL, Liu GF, Wang GC, Sidhu JS et al (2003) Identification of QTL for growth- and grain yield-related traits in rice across nine locations of Asia. Theor Appl Genet 107(4):679–690

    PubMed  Google Scholar 

  • Holland JB, Goodman MM (1995) Combining ability of tropical maize accessions with us germplasm. Crop Sci 35(3):767–773

    Google Scholar 

  • Huang C, Sun HY, Xu DY, Chen QY, Liang YM, Wang XF, Xu GH, Tian JG, Wang CL, Li D et al (2018) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA 115(2):E334–E341

    CAS  PubMed  Google Scholar 

  • Hung HY, Shannon LM, Tian F, Bradbury PJ, Chen C, Flint-Garcia SA, McMullen MD, Ware D, Buckler ES, Doebley JF et al (2012) ZmCCT and the genetic basis of day-length adaptation underlying the postdomestication spread of maize. Proc Natl Acad Sci USA 109(28):E1913–E1921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiao YP, Peluso P, Shi JH, Liang T, Stitzer MC, Wang B, Campbell MS, Stein JC, Wei XH, Chin CS et al (2017) Improved maize reference genome with single-molecule technologies. Nature 546(7659):524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jin ML, Liu XG, Jia W, Liu HJ, Li WQ, Peng Y, Du YF, Wang YB, Yin YJ, Zhang XH et al (2018) ZmCOL3, a CCT gene represses flowering in maize by interfering with the circadian clock and activating expression of ZmCCT. J Integr Plant Biol 60(6):465–480

    CAS  PubMed  Google Scholar 

  • Kazan K, Gardiner DM (2018) Transcriptomics of cereal-Fusarium graminearum interactions: what we have learned so far. Mol Plant Pathol 19(3):764–778

    CAS  PubMed  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175(1):361–374

    PubMed  PubMed Central  Google Scholar 

  • Li D, Wang XF, Zhang XB, Chen QY, Xu GH, Xu DY, Wang CL, Liang YM, Wu LS, Huang C et al (2016) The genetic architecture of leaf number and its genetic relationship to flowering time in maize. New Phytol 210(1):256–268

    CAS  PubMed  Google Scholar 

  • Li YP, Tong LX, Deng LL, Liu QY, Xing YX, Wang C, Liu BS, Yang XH, Xu ML (2017) Evaluation of ZmCCT haplotypes for genetic improvement of maize hybrids. Theor Appl Genet 130(12):2587–2600

    PubMed  Google Scholar 

  • Ma CY, Ma XN, Yao LS, Liu YJ, Du FL, Yang XH, Xu ML (2017) qRfg3, a novel quantitative resistance locus against Gibberella stalk rot in maize. Theor Appl Genet 130(8):1723–1734

    CAS  PubMed  Google Scholar 

  • Mechin V, Argillier O, Hebert Y, Guingo E, Moreau L, Charcosset A, Barriere Y (2001) Genetic analysis and QTL mapping of cell wall digestibility and lignification in silage maize. Crop Sci 41(3):690–697

    CAS  Google Scholar 

  • Meng L, Li H, Zhang L, Wang J (2015) QTL IciMapping: Integrated software for genetic linkage map construction and quantitative trait locus mapping in biparental populations. Crop J 3(3):269–283

    Google Scholar 

  • Miller TA, Muslin EH, Dorweiler JE (2008) A maize CONSTANS-like gene, conz1, exhibits distinct diurnal expression patterns in varied photoperiods. Planta 227(6):1377–1388

    CAS  PubMed  Google Scholar 

  • Mir ZR, Singh PK, Zaidi PH, Vinayan MT, Sharma SS, Krishna MK, Vemula AK, Rathore A, Nair SK (2018) Genetic analysis of resistance to post flowering stalk rot in tropical germplasm of maize (Zea mays L.). Crop Prot 106:42–49

    Google Scholar 

  • Mohammadi M, Anoop V, Gleddie S, Harris LJ (2011) Proteomic profiling of two maize inbreds during early gibberella ear rot infection. Proteomics 11(18):3675–3684

    CAS  PubMed  Google Scholar 

  • Mueller D (2012) Corn disease loss estimates from the United States and Ontario, Canada—2012. Diseases of Corn Purdue Extension publication BP-96-12-W

  • Navarro JAR, Willcox M, Burgueno J, Romay C, Swarts K, Trachsel S, Preciado E, Terron A, Delgado HV, Vidal V et al (2017) A study of allelic diversity underlying flowering-time adaptation in maize landraces. Nat Genet 49(3):476–480

    Google Scholar 

  • Quesada-Ocampo LM, Al-Haddad J, Scruggs AC, Buell CR, Trail F (2016) Susceptibility of maize to stalk rot caused by fusarium graminearum deoxynivalenol and zearalenone mutants. Phytopathology 106(8):920–927

    CAS  PubMed  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E et al (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus m maize. Proc Natl Acad Sci USA 104(27):11376–11381

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song YH, Ito S, Imaizumi T (2013) Flowering time regulation: photoperiod- and temperature-sensing in leaves. Trends Plant Sci 18(10):575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Steuernagel B, Periyannan SK, Hernandez-Pinzon I, Witek K, Rouse MN, Yu G, Hatta A, Ayliffe M, Bariana H, Jones JD et al (2016) Rapid cloning of disease-resistance genes in plants using mutagenesis and sequence capture. Nat Biotechnol 34(6):652–655

    CAS  PubMed  Google Scholar 

  • Studer A, Zhao Q, Ross-Ibarra J, Doebley J (2011) Identification of a functional transposon insertion in the maize domestication gene tb1. Nat Genet 43(11):1160-U1164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tarter JA, Goodman MM, Holland JB (2004) Recovery of exotic alleles in semiexotic maize inbreds derived from crosses between Latin American accessions and a temperate line. Theor Appl Genet 109(3):609–617

    CAS  PubMed  Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet 28(3):286–289

    CAS  PubMed  Google Scholar 

  • Tian JG, Wang CL, Xia JL, Wu LS, Xu GH, Wu WH, Li D, Qin WC, Han X, Chen QY et al (2019) Teosinte ligule allele narrows plant architecture and enhances high-density maize yields. Science 365(6454):658

    CAS  PubMed  Google Scholar 

  • Veldboom LR, Lee M (1996) Genetic mapping of quantitative trait loci in maize in stress and nonstress environments. 1. Grain yield and yield components. Crop Sci 36(5):1310–1319

    CAS  Google Scholar 

  • Vinod KK (2011) Kosambi and the genetic mapping function. Resonance 16(6):540–550

    Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li BL, Zhao Q, Vigouroux Y, Faller M, Bomblies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436(7051):714–719

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CL, Cheng FF, Sun ZH, Tang JH, Wu LC, Ku LX, Chen YH (2008) Genetic analysis of photoperiod sensitivity in a tropical by temperate maize recombinant inbred population using molecular markers. Theor Appl Genet 117(7):1129–1139

    CAS  PubMed  Google Scholar 

  • Wang C, Yang Q, Wang WX, Li YP, Guo YL, Zhang DF, Ma XN, Song W, Zhao JR, Xu ML (2017) A transposon-directed epigenetic change in ZmCCT underlies quantitative resistance to Gibberella stalk rot in maize. New Phytol 215(4):1503–1515

    CAS  PubMed  Google Scholar 

  • Wu JH, Liu SJ, Wang QL, Zeng QD, Mu JM, Huang S, Yu SZ, Han DJ, Kang ZS (2018) Rapid identification of an adult plant stripe rust resistance gene in hexaploid wheat by high-throughput SNP array genotyping of pooled extremes. Theor Appl Genet 131(1):43–58

    CAS  PubMed  Google Scholar 

  • Yang Q, Yin GM, Guo YL, Zhang DF, Chen SJ, Xu ML (2010) A major QTL for resistance to Gibberella stalk rot in maize. Theor Appl Genet 121(4):673–687

    PubMed  Google Scholar 

  • Yang Q, Zhang DF, Xu ML (2012) A sequential quantitative trait locus fine-mapping strategy using recombinant-derived progeny. J Integr Plant Biol 54(4):228–237

    PubMed  Google Scholar 

  • Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T et al (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA 110(42):16969–16974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LY, Li HH, Li ZL, Wang JK (2008) Interactions between markers can be caused by the dominance effect of quantitative trait loci. Genetics 180(2):1177–1190

    PubMed  PubMed Central  Google Scholar 

  • Zuo WL, Chao Q, Zhang N, Ye JR, Tan GQ, Li BL, Xing YX, Zhang BQ, Liu HJ, Fengler KA et al (2015) A maize wall-associated kinase confers quantitative resistance to head smut. Nat Genet 47(2):151–157

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by the Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding (G20220628001) and Jiangsu province's seed industry revitalization project (JBGS[2021]002).

Funding

Beijing Joint Research Program for Germplasm Innovation and New Variety Breeding, G20220628001, Mingliang Xu, Jiangsu province's seed industry revitalization project, JBGS[2021]002, Mingliang Xu.

Author information

Authors and Affiliations

Authors

Contributions

MX and FD designed the research. FD, YT, CM, MZ and CG performed molecular experiments. FD and YT collected phenotypic data and analyzed data. MX and FD wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mingliang Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

We claim that the experiments described herein comply with the ethical standards in China.

Additional information

Communicated by Ian D Godwin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 78643 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, F., Tao, Y., Ma, C. et al. Effects of the quantitative trait locus qPss3 on inhibition of photoperiod sensitivity and resistance to stalk rot disease in maize. Theor Appl Genet 136, 126 (2023). https://doi.org/10.1007/s00122-023-04370-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04370-6

Navigation