Skip to main content
Log in

Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Identification and genomic characterization of major resistance locus against cotton bacterial blight (CBB) using GWAS and linkage mapping to enable genomics-based development of durable CBB resistance and gene discovery in cotton.

Abstract

Cotton bacterial leaf blight (CBB), caused by Xanthomonas citri subsp. malvacearum (Xcm), has periodically been a damaging disease in the USA. Identification and deployment of genetic resistance in cotton cultivars is the most economical and efficient means of reducing crop losses due to CBB. In the current study, genome-wide association study (GWAS) of CBB resistance using an elite diversity panel of 380 accessions, genotyped with the cotton single nucleotide polymorphism (SNP) 63 K array, and phenotyped with race-18 of CBB, localized the CBB resistance to a 2.01-Mb region in the long arm of chromosome D02. Molecular genetic mapping using an F6 recombinant inbred line (RIL) population showed the CBB resistance in cultivar Arkot 8102 was controlled by a single locus (BB-13). The BB-13 locus was mapped within the 0.95-cM interval near the telomeric region in the long arm of chromosome D02. Flanking SNP markers, i04890Gh and i04907Gh of the BB-13 locus, identified from the combined linkage analysis and GWAS, targeted it to a 371-Kb genomic region. Candidate gene analysis identified thirty putative gene sequences in the targeted genomic region. Nine of these putative genes and two NBS-LRR genes adjacent to the targeted region were putatively involved in plant disease resistance and are possible candidate genes for BB-13 locus. Genetic mapping and genomic targeting of the BB13 locus in the current study will help in cloning the CBB-resistant gene and establishing the molecular genetic architecture of the BB-13 locus towards developing durable resistance to CBB in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The plant material and datasets employed in this study are available from the corresponding author on reasonable request.

References

  • Abdelraheem A, Elassbli H, Zhu Y, Kuraparthy V, Hinze L, Stelly D, Wedegaertner T, Zhang J (2019) A genome-wide association study uncovers consistent quantitative trait loci for resistance to verticillium wilt and fusarium wilt race 4 in the US upland cotton. Theor Appl Genet 133:563–577

    Google Scholar 

  • Alexander AS (2009) Isolation frequency of Xanthomonas axonopodis pv. malvacearum from acid delinted and easiflo treated cotton seed. Dissertation, Texas Tech University

  • Andrade AC, Viana JM, Pereira HD, Pinto VB, Silva FEF (2019) Linkage disequilibrium and haplotype block patterns in popcorn populations. PLoS ONE 14(9):e0219417. https://doi.org/10.1371/journal.pone.0219417

    Article  CAS  Google Scholar 

  • Atkinson GF (1892) Diseases of cotton. In: Results of experiments on cotton in alabama. Alabama experiment station, Auburn, pp 1–32

  • Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visualization of ld and haplotype maps. Bioinform 21:263–265

    CAS  Google Scholar 

  • Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya HA (2017) Assessment of genetic diversity in crop plants—an overview. Adv Plants Agric Res 7:279–286

    Google Scholar 

  • Bird LS (1982) The MAR (multi-adversity resistance) system for genetic improvement of cotton. Plant Dis 66:172–176

    Google Scholar 

  • Bird LS, Blank LM (1951) Breeding strains of cotton resistant to bacterial blight. Texas Agricultural Experiment Station, Texas, USA

  • Bourland FM, Bridge RR (1988) Registration of miscot t8–27 cotton germplasm. Crop Sci 28:1035–1035

    Google Scholar 

  • Bourland FM, McGowan JRE, Johnson JT (1997) Registration of arkot 8102, arkot 8506, and arkot 8514 germplasm lines of cotton. Crop Sci 37:1397. https://doi.org/10.2135/cropsci1997.0011183X003700040086x

    Article  Google Scholar 

  • Bourland FM (2018) Breeding for bacterial blight resistance in cotton. In: Proceedings of the beltwide cotton conference. San Antonio, TX, pp 19–22.

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association mapping of complex traits in diverse samples. Bioinform 23:2633–2635

    CAS  Google Scholar 

  • Broman KW, Wu H, Sen S, Churchill GA (2003) R/qtl: qtl mapping in experimental crosses. Bioinform 19:889–890

    CAS  Google Scholar 

  • Browning BL, Zhou Y, Browning SR (2018) A one-penny imputed genome from next-generation reference panels. Am J Hum Genet 103(3):338–348. https://doi.org/10.1016/j.ajhg.2018.07.015

    Article  CAS  Google Scholar 

  • Browning BL, Tian X, Zhou Y, Browning SR (2021) Fast two-stage phasing of large-scale sequence data. Am J Hum Genet 108(10):1880–1890. https://doi.org/10.1016/j.ajhg.2021.08.005

    Article  CAS  Google Scholar 

  • Buckler ES, Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Google Scholar 

  • Chang CW, Fridman E, Mascher M, Himmelbach A, Schmid K (2022) Physical geography, isolation by distance and environmental variables shape genomic variation of wild barley (Hordeum vulgare L. ssp. spontaneum) in the southern levant. Heredity 128:107–119. https://doi.org/10.1038/s41437-021-00494-x

    Article  Google Scholar 

  • Cheema J, Dicks J (2009) Computational approaches and software tools for genetic linkage map estimation in plants. Brief Bioinform 10:595–608

    CAS  Google Scholar 

  • Chen ZJ, Sreedasyam A, Ando A, Song Q, De Santiago LM, Hulse-Kemp AM, Ding M, Ye W, Kirkbride RC, Jenkins J, Plott C (2020) Genomic diversifications of five Gossypium allopolyploid species and their impact on cotton improvement. Nat Genet 52(5):525–533

    CAS  Google Scholar 

  • Cheong WH, Tan YC, Yap SJ, Ng KP (2015) ClicO FS: an interactive web-based service of circos. Bioinform 31:3685–3687

    CAS  Google Scholar 

  • Daniels MJ, Barber CE, Turner PC, Cleary WG, Sawczyc MK (1984) Isolation of mutants of Xanthomonas campestris pv. campestris showing altered pathogenicity. Microb 130:2447–2455

    Google Scholar 

  • De Young BJ, Innes RW (2006) Plant nbs-lrr proteins in pathogen sensing and host defense. Nat Immunol 7(12):1243–1249. https://doi.org/10.1038/ni1410

    Article  CAS  Google Scholar 

  • De Vleesschauwer D, Seifi HS, Filipe O, Haeck A, Huu SN, Demeestere K, Höfte M (2016) The della protein srl1 integrates and amplifies salicylic acid- and jasmonic acid-dependent innate immunity in rice. Plant Physiol (Bethesda) 170:1831–1847

    Google Scholar 

  • Delannoy E, Lyon BR, Marmey P, Jalloul A, Daniel JF, Montillet JL, Mm E, Nicole M (2005) Resistance of cotton towards Xanthomonas campestris pv. malvacearum. Annu Rev Phytopathol 43:63–82. https://doi.org/10.1146/annurev.phyto.43.040204.140251

    Article  CAS  Google Scholar 

  • Doyle EL, Stoddard BL, Voytas DF, Bogdanove AJ (2013) Tal effectors: highly adaptable phytobacterial virulence factors and readily engineered DNA-targeting proteins. Trends Cell Mol Biol 23(8):390–398

    CAS  Google Scholar 

  • Earl DA, VonHoldt BM (2011) Structure harvester: a website and program for visualizing structure output and implementing the evanno method. Conservation Genet Resour 4:359–361

    Google Scholar 

  • Elassbli H, Abdelraheem A, Zhu Y, Teng Z, Wheeler TA, Kuraparthy V, Hinze L, Stelly DM, Wedegaertner T, Zhang J (2021) Evaluation and genome-wide association study of resistance to bacterial blight race 18 in US upland cotton germplasm. Mol Genet Genom 296:719–729

    CAS  Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87(4):295–307

    CAS  Google Scholar 

  • Feng F, Zhou JM (2012) Plant–bacterial pathogen interactions mediated by type III effectors. Curr Opin Plant Biol 15(4):469–476. https://doi.org/10.1016/j.pbi.2012.03.004

    Article  CAS  Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100(25):15253–15258.

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296. https://doi.org/10.1146/annurev.py.09.090171.001423

    Article  Google Scholar 

  • Gilroy EM, Hein I, Van Der Hoorn R, Boevink PC, Venter E, McLellan H, Kaffarnik F, Hrubikova K, Shaw J, Holeva M, López EC (2007) Involvement of cathepsin b in the plant disease resistance hypersensitive response. Plant J 52(1):1–3

    CAS  Google Scholar 

  • Girardot B, Héquet E, Yehouessi MT, Guibordeau P (1986) Demonstration of a variety of Gossypium hirsutum L. resistant to strains of Xanthomonas campestris pv. malvacearum (Smith) dye virulent on major gene associations (B2–B3 or B9L–B10L). Cotton Tropical Fibres 41:67–69

    Google Scholar 

  • Green JM, Brinkerhoff LA (1956) Inheritance of three genes for bacterial blight resistance in upland Cotton 1. Agronomy J 48:481–485

    Google Scholar 

  • Hinze LL, Hulse-Kemp AM, Wilson IW, Zhu Q, Llewellyn DJ, Taylor JM, Spriggs A, Fang DD, Ulloa M, Burke JJ, Giband M, Lacape J, Van Deynze A, Udall JA, Scheffler JA, Hague S, Wendel JF, Pepper AE, Frelichowski J, Lawley CT, Jones DC, Percy RG, Stelly DM (2017) Diversity analysis of cotton (Gossypium hirsutum L.) germplasm using the CottonSNP63k array. BMC Plant Biol 17(1):1–20. https://doi.org/10.1186/s12870-017-0981-y

  • Hochberg Y (1988) A sharper bonferroni procedure for multiple tests of significance. Biometrika 75:800–802

    Google Scholar 

  • Hou X, Lee LYC, Xia K, Yan Y, Yu H (2010) Dellas modulate jasmonate signaling via competitive binding to JAZs. Dev Cell 19:884–894

    CAS  Google Scholar 

  • Hulse-Kemp AM, Lemm J, Plieske J, Ashrafi H, Buyyarapu R, Fang DD, Frelichowski J, Giband M, Hague S, Hinze LL, Kochan KJ, Riggs PK, Scheffler JA, Udall JA, Ulloa M, Wang SS, Zhu Q, Bag SK, Bhardwaj A, Burke JJ, Byers RL, Claverie M, Gore MA, Harker DB, Islam MS, Jenkins JN, Jones DC, Lacape J, Llewellyn DJ, Percy RG, Pepper AE, Poland JA, Mohan Rai K, Sawant SV, Singh SK, Spriggs A, Taylor JM, Wang F, Yourstone SM, Zheng X, Lawley CT, Ganal MW, Van Deynze A, Wilson IW, Stelly DM (2015) Development of a 63k snp array for cotton and high-density mapping of intraspecific and interspecific populations of Gossypium spp. G3 (Bethesda) 5:1187–1209

  • Hunter RE, Brinkerhoff LA, Bird LS (1968) Development of a set of upland cotton lines for differentiating races of Xanthomonas malvacearum. Phytopathology 58(6):830–832

    Google Scholar 

  • Innes NL (1969) Inheritance of resistance to bacterial blight of cotton: IV. Tanzania selections. J Agric Sci 72:41–57

    Google Scholar 

  • Innes NL, Brown SJ, Walker JT (1974) Genetical and environmental variation for resistance to bacterial blight of upland cotton. Hered 32(1):53–72

    Google Scholar 

  • Kamvar ZN, Brooks JC, Grünwald NJ (2015) Novel r tools for analysis of genome-wide population genetic data with emphasis on clonality. Front Genet 6:208. https://doi.org/10.3389/fgene.2015.00208

    Article  CAS  Google Scholar 

  • Kaneda T, Taga Y, Takai R, Iwano M, Matsui H, Takayama S, Isogai A, Che F (2009) The transcription factor osnac4 is a key positive regulator of plant hypersensitive cell death. EMBO J 28:926–936

    CAS  Google Scholar 

  • Knight RL (1944) The genetics of blackarm resistance. J Genet 46(1):1–27

    Google Scholar 

  • Knight RL (1963) The genetics of blackarm resistance XII. Transference of resistance from Gossypium herbaceum to G. barbadense. J Genet 3:328–346

    Google Scholar 

  • Knight RL, Clouston TW (1939) The genetics of black-arm resistance. Factors B2 and B3. J Genet 38:133–159

    Google Scholar 

  • Kumar NV, Katageri IS, Gowda SA, Adiger S, Yadava SK, Lachagari VB (2019) 63K SNP chip based linkage mapping and qtl analysis for fiber quality and yield component traits in Gossypium barbadense L. cotton. Euphytica 215:1–16. https://doi.org/10.1007/s10681-018-2326-9

    Article  CAS  Google Scholar 

  • Letunic I, Bork P (2021) Interactive tree of life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49:293–296. https://doi.org/10.1093/nar/gkab301

    Article  CAS  Google Scholar 

  • Li J, Zhao C, Batoux M, Nekrasov V, Roux M, Chinchilla D, Zipfel C, Jones JDG (2009) Specific er quality control components required for biogenesis of the plant innate immune receptor efr. Proc Natl Acad Sci USA 106:15973–15978

    CAS  Google Scholar 

  • Li C, Dong Y, Zhao T, Li L, Li C, Yu E, Mei L, Daud MK, He Q, Chen J, Zhu S (2016) Genome-wide snp linkage mapping and qtl analysis for fiber quality and yield traits in the upland cotton recombinant inbred lines population. Front Plant Sci 7:1–16. https://doi.org/10.3389/fpls.2016.01356

    Article  Google Scholar 

  • Liu X, Yang L, Wang J, Wang Y, Guo Z, Li Q, Yang J, Wu Y, Chen L, Teng Z, Liu D, Liu D, Guo K, Zhang Z (2021) Analyzing quantitative trait loci for fiber quality and yield-related traits from a recombinant inbred line population with Gossypium hirsutum race palmeri as one parent. Front Plant Sci 12:1–11. https://doi.org/10.3389/fpls.2021.817748

    Article  Google Scholar 

  • Matsukawa M, Shibata Y, Ohtsu M, Mizutani A, Mori H, Wang P, Ojika M, Kawakita K, Takemoto D (2013) Nicotiana benthamiana calreticulin 3a is required for the ethylene-mediated production of phytoalexins and disease resistance against oomycete pathogen Phytophthora infestans. Mol Plant Microbe Interact 26:880–892

    CAS  Google Scholar 

  • Meyer LA (2021) Cotton and wool outlook: December 2021. U.S. Department of agriculture, economic research service. https://www.ers.usda.gov/webdocs/outlooks/102828/cws-21k.pdf?v=5542. Accessed 1 March 2022

  • Nagaraj S, Senthil-Kumar M, Ramu VS, Wang K, Mysore KS (2015) Plant ribosomal proteins, rpl12 and rpl19, play a role in nonhost disease resistance against bacterial pathogens. Front Plant Sci 6:1192–1202. https://doi.org/10.3389/fpls.2015.01192

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106(949):283–292

    Google Scholar 

  • Panahabadi R, Ahmadikhah A, McKee LS, Ingvarsson PK, Farrokhi N (2021) Genome-wide association mapping of mixed linkage (1, 3; 1, 4)-β-glucan and starch contents in rice whole grain. Front Plant Sci:1781. https://doi.org/10.3389/fpls.2021.665745

  • Paradis E, Schliep K (2019) Ape 5.0: an environment for modern phylogenetics and evolutionary analyses in r. Bioinform 35(3):526–528. https://doi.org/10.1093/bioinformatics/bty633

  • Park SR, Kim HS, Lee KS, Hwang D, Bae S, Ahn I, Lee SH, Kim ST (2017) Overexpression of rice nac transcription factor osnac58 on increased resistance to bacterial leaf blight. J Plant Biotechnol 44:149–155

    Google Scholar 

  • Phillips AZ, Berry JC, Wilson MC, Vijayaraghavan A, Burke J, Bunn JI, Allen TW, Wheeler T, Bart RS (2017) Genomics-enabled analysis of the emergent disease cotton bacterial blight. PLoS Genet 9:1–23

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genet (austin) 155:945–959

    CAS  Google Scholar 

  • Ramesh UM, Methre R, Kumar N, Katageri IS, Gowda SA, Adiger S, Yadava SK, Lachagari VB (2019) Genome mapping and molecular markers identification for yield, yield component and fibre quality traits in tetraploid cotton. Plant Breed 138:880–896

    CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ES (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA 98:11479–11484

    CAS  Google Scholar 

  • Roberts P (2016) Bacterial Blight Update (Bob Kemerait, UGA Plant Pathologist). Georgia cotton news. http://physicsweb.org/articles/news/11/6/16/1. Accessed 06 March 2022

  • Rungis D, Llewellyn D, Dennis ES, Lyon BR (2002) Investigation of the chromosomal location of the bacterial blight resistance gene present in an Australian cotton (Gossypium hirsutum L.) cultivar. Aust J Agric Res 53:551–560

    CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425. https://doi.org/10.1093/oxfordjournals.molbev.a040454

    Article  CAS  Google Scholar 

  • Semizer CD, Altan F, Akdemir H, Tosun M, Gurel A, Tanyolac B (2015) Qtl analysis of fiber color and fiber quality in naturally green colored cotton (Gossypium hirsutum L.). Turkish J Field Crops 20:49–58

    Google Scholar 

  • Shabab M, Shindo T, Gu C, Kaschani F, Pansuriya T, Chintha R, Harzen A, Colby T, Kamoun S, van der Hoorn RA (2008) Fungal effector protein avr2 targets diversifying defense-related cys proteases of tomato. Plant Cell 20(4):1169–1183

    CAS  Google Scholar 

  • Shan W, Jiang Y, Han J, Wang K (2016) Comprehensive cytological characterization of the Gossypium hirsutum genome based on the development of a set of chromosome cytological markers. Crop J 4:256–265

    Google Scholar 

  • Shim H, Chasman DI, Smith JD, Mora S, Ridker PM, Nickerson DA, Krauss RM, Stephens M (2015) A multivariate genome-wide association analysis of 10 ldl subfractions, and their response to statin treatment, in 1868 Caucasians. PLoS ONE 10:1–20

    Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, xa21. Science 270(5243):1804–1806

    CAS  Google Scholar 

  • Song J, Win J, Tian M, Schornack S, Kaschani F, Ilyas M, van der Hoorn RA, Kamoun S (2009) Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci USA 106(5):1654–1659

    CAS  Google Scholar 

  • Song C, Li W, Pei X, Liu Y, Ren Z, He K, Zhang F, Sun K, Zhou X, Ma X, Yang D (2019) Dissection of the genetic variation and candidate genes of lint percentage by a genome-wide association study in upland cotton. Theor Appl Genet 132:1991–2002

    CAS  Google Scholar 

  • Song X, Zhu G, Hou S, Ren Y, Amjid MW, Li W, Guo W (2021) Genome-wide association analysis reveals loci and candidate genes involved in fiber quality traits under multiple field environments in cotton (Gossypium hirsutum). Front Plant Sci 12:1–14. https://doi.org/10.3389/fpls.2021.695503

    Article  CAS  Google Scholar 

  • Tan Z, Zhang Z, Sun X, Li Q, Sun Y, Yang P, Wang W, Liu X, Chen C, Liu D, Teng Z, Guo K, Zhang J, Liu D, Zhang Z (2018) Genetic map construction and fiber quality qtl mapping using the cottonSNP80k array in upland cotton. Front Plant Sci 9:1–11. https://doi.org/10.3389/fpls.2018.00225

    Article  Google Scholar 

  • Team RC (2021) R: a language and environment for statistical computing. r foundation for statistical computing, Vienna, Austria

  • Turner SD (2018) qqman: an r package for visualizing gwas results using q-q and manhattan plots. J Open Source Softw 25:1–2

    Google Scholar 

  • Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V (2014) Genetic diversity and population structure in the US upland cotton (Gossypium hirsutum L.). Theor Appl Genet 127:283–295

    Google Scholar 

  • Ulloa M, Hulse-Kemp AM, De Santiago LM, Stelly DM, Burke JJ (2017) Insights into upland cotton (Gossypium hirsutum L.) genetic recombination based on 3 high-density single-nucleotide polymorphism and a consensus map developed independently with common parents. Genom Insights 10:1–15. https://doi.org/10.1177/1178631017735104

    Article  Google Scholar 

  • Üstün S, Börnke F (2014) Interactions of Xanthomonas type-III effector proteins with the plant ubiquitin and ubiquitin-like pathways. Front Plant Sci 5:1–6. https://doi.org/10.3389/fpls.2014.00736

    Article  Google Scholar 

  • Van Ooijen JW (2018) JoinMap 5, software for the calculation of genetic linkage maps in experimental populations of diploid species. Kyazma. https://www.kyazma.nl/index.php/JoinMap/. Accessed 1 March 2022

  • Van HO, Stam P, Richard GF, Herman VJ, Eck V (2005) Record: a novel method for ordering loci on a genetic linkage map. Theor Appl Genet 112:30–40

    Google Scholar 

  • VanRaden PM (2008) Efficient methods to compute genomic predictions. J Dairy Sci 91:4414–4423

    CAS  Google Scholar 

  • Voora V, Larrea C, Bermudez S (2020) Global market report: cotton. iisd.org. https://www.iisd.org/system/files/publications/ssi-global-market-report-cotton.pdf. Accessed 01 March 2022

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and qtls. J Heredity 93:77–78

    CAS  Google Scholar 

  • Wallace TP, El-Zik KM (1989) Inheritance of resistance in three cotton cultivars to the hv1 isolate of bacterial blight. Crop Sci 29:1114–1119

    Google Scholar 

  • Wang Z, Zhang D, Wang X, Tan X, Guo H, Paterson AH (2013) A whole-genome DNA marker map for cotton based on the d-genome sequence of Gossypium raimondii L. G3 (Bethesda) 3(10):1759–1767. https://doi.org/10.1534/g3.113.006890

  • Wang F, Zhang J, Chen Y, Zhang C, Gong J, Song Z, Zhou J, Wang J, Zhao C, Jiao M, Liu A, Du Z, Yuan Y, Fan S, Zhang J (2019) Identification of candidate genes for key fibre‐related qtls and derivation of favourable alleles in Gossypium hirsutum recombinant inbred lines with G. barbadense introgressions. Plant Biotechnol J 18(3):707–720

  • Wendel JF, Grover CE (2015) Taxonomy and evolution of the cotton genus, Gossypium. Cotton 57(1):25–44

    Google Scholar 

  • Wheeler TA, Harris T, Bart RS, Isakeit T, Woodward J, Allen TW, Kemerait RC (2021) Response of Xanthomonas citri pv. malvacearum isolates to cotton differing in susceptibility to the bacterium and their predicted type III effectors. Plant Health Progress 23:40–44. https://doi.org/10.1094/PHP-06-21-0090-RS

    Article  Google Scholar 

  • Wild MJ, Davière S, Cheminant T, Regnault N, Baumberger D, Heintz R, Baltz P, Genschik Achard P (2012) Thearabidopsis DELLA RGA-LIKE3 is a direct target of MYC2 and modulates jasmonate signaling responses. Plant Cell 24:3307–3319

    CAS  Google Scholar 

  • Wright RJ, Thaxton PM, El-Zik KM, Paterson AH (1998) D-subgenome bias of Xcm resistance genes in tetraploid Gossypium (cotton) suggests that polyploid formation has created novel avenues for evolution. Genet 149:1987–1996

    CAS  Google Scholar 

  • Xian LS, Xue ZS, Tian ZZ (2006) Segregation distortion and its effect on genetic mapping in plants. Chin J Agric Biotechnol 3:163–169

    Google Scholar 

  • Xiao J, Fang DD, Bhatti M, Hendrix B, Cantrell R (2009) A snp haplotype associated with a gene resistant to Xanthomonas axonopodis pv. malvacearum in upland cotton (Gossypium hirsutum L.). Mol Breed 25:593–602

    Google Scholar 

  • Yang Z, Ge X, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y (2019) Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun 10:1–13

    Google Scholar 

  • Yang Z (2013) Fine mapping a bacterial blight resistance gene in the cotton cultivar s295 (Gossypium hirsutum L.). Dissertation, Texas Tech University

  • Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X (2021) rMVP: a memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genomics Proteomics Bioinform. https://doi.org/10.1016/j.gpb.2020.10.007

    Article  Google Scholar 

  • Yu J, Jung S, Cheng C, Lee T, Zheng P, Buble K, Crabb J, Humann J, Hough H, Jones D, Campbell JT, Udall J, Main D (2021) CottonGen: the community database for cotton genomics. Genet Breed Res Plants (Basel) 10:1–16

    Google Scholar 

  • Yuan Y, Wang X, Wang L, Xing H, Wang Q, Saeed M, Tao J, Feng W, Zhang G, Song X, Sun X (2018) Genome-wide association study identifies candidate genes related to seed oil composition and protein content in Gossypium hirsutum L. Front Plant Sci 9:1–18. https://doi.org/10.3389/fpls.2018.01359

    Article  Google Scholar 

  • Zhang K, Kuraparthy V, Fang H, Zhu L, Sood S, Jones DC (2019) High-density linkage map construction and qtl analyses for fiber quality, yield and morphological traits using cottonSNP63K array in upland cotton (Gossypium hirsutum L.). BMC Genom 20:1–26

    Google Scholar 

  • Zhang J, Bourland F, Wheeler T, Wallace T (2020) Bacterial blight resistance in cotton: genetic basis and molecular mapping. Euphytica 216:1–19. https://doi.org/10.1007/s10681-020-02630-w

    Article  CAS  Google Scholar 

  • Zhou J, Loh YT, Bressan RA, Martin GB (1995) The tomato gene Pti1 encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83(6):925–935

    CAS  Google Scholar 

  • Zhou F, Kurth J, Wei F, Elliott C, Valè G, Yahiaoui N, Keller B, Somerville S, Wise R, Schulze-Lefert P (2001) Cell-autonomous expression of barley Mla1 confers race-specific resistance to the powdery mildew fungus via a rar1-independent signaling pathway. Plant Cell 13(2):337–350

    CAS  Google Scholar 

  • Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R (2017) CottonFGD: an integrated functional genomics database for cotton. BMC Plant Biol 17:101–111

    Google Scholar 

  • Zhu L, Andres RJ, Zhang K, Kuraparthy V (2021) High-density linkage map construction and qtl analysis of fiber quality and lint percentage in tetraploid cotton. Crop Sci 61:3340–3360

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support provided by Cotton Incorporated (CI) and North Carolina Cotton Producers’ Association for the current research and an assistantship to Navin Shrestha. We also thank Kelli Kochan of Texas A&M University for her help with genotyping the lines using the Cotton 63K SNP array. Thanks to Marisa Yoder and Alex Weil at the Danforth Plant Science Center for their help with bacterial infiltrations and cotton planting. We appreciate Josh Udall, James Frelichowski and Janna Love of the Crop Germplasm Research, USDA-ARS, College Station, TX for providing the Upland cotton accessions used in this study.

Funding

Funding support for this research provided by Cotton Incorporated (projects: projects: 19-969 and 19-952) and North Carolina Cotton Producers’ Association (project 19-796NC) to Vasu Kuraparthy, National Science Foundation 2014192836 and 1928344 to Anne Phillips and Rebecca Bart, respectively. Taylor Harris is supported by a NIGMS-funded Initiative for Maximizing Student Development grant to Washington University.

Author information

Authors and Affiliations

Authors

Contributions

SAG performed data analysis on the GWAS and bi-parental mapping population. AZP screened the NAM parents for resistance to CBB. TH performed additional screening of NAM parents and the bi-parental mapping population and contributed to writing of the manuscript. NS, KZ and HF developed the RIL population. FB developed and contributed Arkot lines of cotton used in the research. VK and SS genotyped the RILs and DIV panel. RB oversaw the phytopathology experiments, provided general feedback on the mapping and interpretation of data and contributed to writing of the manuscript. VK conceived of the project and oversaw all aspects of the work. SAG and VK co-wrote the manuscript.

Corresponding author

Correspondence to Vasu Kuraparthy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Tianzhen Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 4490 kb)

Supplementary file2 (XLSX 444 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowda, S.A., Shrestha, N., Harris, T.M. et al. Identification and genomic characterization of major effect bacterial blight resistance locus (BB-13) in Upland cotton (Gossypium hirsutum L.). Theor Appl Genet 135, 4421–4436 (2022). https://doi.org/10.1007/s00122-022-04229-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-022-04229-2

Navigation