Skip to main content
Log in

RIP2 interacts with REL1 to control leaf architecture by modulating brassinosteroid signaling in rice

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

RIP2 serves as a negative regulator of leaf inclination through the coordination of BR signaling in rice.

Abstract

Leaf angle is considered as an important morphological trait in rice. Appropriate leaf angle increases the efficiency of sunlight capture and maintains a high level of photosynthesis, ultimately improving crop yield. Our present study demonstrates that RIP2 encodes a RING finger E3 ligase protein that directly binds to ROLLED AND ERECT LEAF 1 (REL1), a key regulator of leaf morphogenesis. Further studies reveal that RIP2 is extensively involved in leaf inclination through the coordination of BR signaling. Repression of RIP2 led to altered phenotypes, including enlarged leaf inclination and fewer tillers. Conversely, rice overexpressing RIP2 exhibited erect leaves. The double mutant rel1 rip2 displayed phenotypes similar to those of rel1, characterized by rolled leaves. Transcriptome profiling of WT, rel1, rip2, and rel1 rip2 mutants revealed that BR and IAA signaling pathways were impaired in rip2. Moreover, rel1, rip2, and rel1 rip2 were insensitive to BR treatment. In summary, these findings demonstrate that RIP2 serves as a negative regulator of leaf inclination, and therefore, provides an approach for the optimization of an ideal plant type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Nat Acad Sci 104(34):13839–13844

    Article  CAS  Google Scholar 

  • Best NB, Hartwig T, Budka J, Fujioka S, Johal G, Schulz B, Dilkes BP (2016) nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis gene DWARF1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol 171(4):2633–2647

    Article  CAS  Google Scholar 

  • Chen QL, Xie QJ, Gao J, Wang WY, Sun B, Liu BH, Zhu HT, Peng HF, Zhao HB, Liu CH, Wang J, Zhang JL, Zhang GQ, Zhang ZM (2015) Characterization of Rolled and Erect Leaf 1 in regulating leave morphology in rice. J Exp Bot 66(19):6047–6058

    Article  CAS  Google Scholar 

  • Feng ZM, Wu CY, Wang CM, Roh J, Zhang L, Chen J, Zhang SZ, Zhang H, Yang CY, Hu JL, You XM, Liu X, Yang XM, Guo XP, Zhang X, Wu FQ, Terzaghi W, Kim SK, Jiang L, Wan JM (2016) SLG controls grain size and leaf angle by modulating brassinosteroid homeostasis in rice. J Exp Bot 67(14):4241–4253

    Article  CAS  Google Scholar 

  • Hirano K, Yoshida H, Aya K, Kawamura M, Hayashi M, Hobo T, Sato-Izawa K, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2017) SMALL ORGAN SIZE 1 and SMALL ORGAN SIZE 2/DWARF AND LOW-TILLERING form a complex to integrate auxin and brassinosteroid signaling in rice. Mol Plant 10(4):590–604

    Article  CAS  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15(12):2900–2910

    Article  CAS  Google Scholar 

  • Hussain MA, Fahad S, Sharif R, Jan MF, Mujtaba M, Ali Q, Ahmad A, Ahmad H, Amin N, Ajayo BS, Sun CB, Gu LY, Ahmad I, Jiang ZM, Hou JC (2020) Multifunctional role of brassinosteroid and its analogues in plants. Plant Growth Regul 92(2):141–156

  • Jaillais Y, Vert G (2016) Brassinosteroid signaling and BRI1 dynamics went underground. Curr Opin Plant Biol 33:92–100

    Article  CAS  Google Scholar 

  • Jang S, An G, Li HY (2017) Rice leaf angle and grain size are affected by the OsBUL1 transcriptional activator complex. Plant Physiol 173(1):688–702

    Article  CAS  Google Scholar 

  • Ku LX, Zhao WM, Zhang J, Wu LC, Wang CL, Wang PA, Zhang WQ, Chen YH (2010) Quantitative trait loci mapping of leaf angle and leaf orientation value in maize (Zea mays L.). Theor Appl Genet 121(5):951–959

  • Li L, Shi ZY, Li L, Shen GZ, Wang XQ, An LS, Zhang JL (2010) Overexpression of ACL1 (abaxially curled leaf 1) increased bulliform cells and induced abaxial curling of leaf blades in rice. Molecular Plant 3(5):807–817

    Article  CAS  Google Scholar 

  • Li X, Wu PF, Lu Y, Guo SY, Zhong ZJ, Shen RX, Xie QJ (2020) Synergistic interaction of phytohormones in determining leaf angle in crops. Int J Mol Sci 21(14):5052

    Article  CAS  Google Scholar 

  • Lim SD, Cho HY, Park YC, Ham DJ, Lee JK, Jang CS (2013) The rice RING finger E3 ligase, OsHCI1, drives nuclear export of multiple substrate proteins and its heterogeneous overexpression enhances acquired thermotolerance. J Exp Bot 64(10):2899–2914

    Article  CAS  Google Scholar 

  • Liu KY, Cao J, Yu KH, Liu XY, Gao YJ, Chen Q, Zhang WJ, Peng HR, Du JK, Xin MM, Hu ZR, Guo WL, Rossi V, Ni ZF, Sun QX, Yao YY (2019) Wheat TaSPL8 modulates leaf angle through auxin and brassinosteroid signaling. Plant Physiol 181(1):179–194

    Article  CAS  Google Scholar 

  • Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):1–21

    Article  Google Scholar 

  • Luo XY, Zheng JS, Huang RY, Huang YM, Wang HC, Jiang LR, Fang XJ (2016) Phytohormones signaling and crosstalk regulating leaf angle in rice. Plant Cell Rep 35(12):2423–2433

    Article  Google Scholar 

  • Nam KH, Li JM (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110(2):203–212

    Article  CAS  Google Scholar 

  • Nolan TM, Vukašinović N, Liu DR, Russinova E, Yin YH (2020) Brassinosteroids: multidimensional regulators of plant growth, development, and stress responses. Plant Cell 32(2):295–318

    Article  CAS  Google Scholar 

  • Oard JH, Linscombe SD, Braverman MP, Jodari F, Blouin DC, Leech M, Kohli A, Vain P, Cooley JC, Christou P (1996) Development, field evaluation, and agronomic performance of transgenic herbicide resistant rice. Mol Breeding 2(4):359–368

    Article  CAS  Google Scholar 

  • Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M (2012) CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 287(37):31551–31560

    Article  CAS  Google Scholar 

  • Peng YC, Chen LL, Li SJ, Zhang YY, Xu R, Liu ZP, Liu WX, Kong JJ, Huang XH, Wang YC, Cheng BJ, Zheng LY, Li YH (2018) BRI1 and BAK1 interact with G proteins and regulate sugar-responsive growth and development in Arabidopsis. Nat Commun 9(1):1–13

    Article  Google Scholar 

  • Qiao SL, Sun SY, Wang LL, Wu ZH, Li CX, Li XM, Wang Tao, Leng LN, Tian WS, Lu TG, Wang XL (2017) The RLA1/SMOS1 transcription factor functions with OsBZR1 to regulate brassinosteroid signaling and rice architecture. Plant Cell 29(2):292–309

    Article  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nature Biotechnol 24(1):105–109

    Article  CAS  Google Scholar 

  • Sinclair TR, Horie T (1989) Leaf nitrogen, photosynthesis, and crop radiation use efficiency: a review. Crop Sci 29(1):90–98

    Article  Google Scholar 

  • Sinclair TR, Sheehy JE (1999) Erect leaves and photosynthesis in rice. Science 283(5407):1456–1456

    Article  CAS  Google Scholar 

  • Sun SY, Chen DH, Li XM, Qiao SL, Shi CN, Li CX, Shen HY, Wang XL (2015) Brassinosteroid signaling regulates leaf erectness in Oryza sativa via the control of a specific U-type cyclin and cell proliferation. Dev Cell 34(2):220–228

    Article  CAS  Google Scholar 

  • Takeno K, Pharis RP (1982) Brassinosteroid-induced bending of the leaf lamina of dwarf rice seedlings: an auxin-mediated phenomenon. Plant Cell Physiol 23(7):1275–1281

    Article  CAS  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7(3):562–578

    Article  CAS  Google Scholar 

  • Wada K, Marumo S, Ikekawa N, Morisaki M, Mori K (1981) Brassinolide and homobrassinolide promotion of lamina inclination of rice seedlings. Plant Cell Physiol 22(2):323–325

    CAS  Google Scholar 

  • Wang XF, Goshe MB, Soderblom EJ, Phinney BS, Kuchar JA, Li J, Asami T, Yoshida S, Huber SC, Clouse SD (2005) Identification and functional analysis of in vivo phosphorylation sites of the Arabidopsis BRASSINOSTEROID-INSENSITIVE1 receptor kinase. Plant Cell 17(6):1685–1703

    Article  CAS  Google Scholar 

  • Wang L, Xu YY, Zhang C, Ma QB, Joo SH, Kim SK, Xu ZH, Chong K (2008) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS ONE 3(10):e3521

  • Wang K, Li MQ, Chang YP, Zhang B, Zhao QZ, Zhao WL (2020) The basic helix-loop-helix transcription factor OsBLR1 regulates leaf angle in rice via brassinosteroid signalling. Plant Mol Biol 102(6):589–602

  • Wu XR, Tang D, Li M, Wang KJ, Cheng ZK (2013) Loose Plant Architecture1, an INDETERMINATE DOMAIN protein involved in shoot gravitropism, regulates plant architecture in rice. Plant Physiol 161(1):317–329

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Yuan L, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92(2):230–244

    Article  CAS  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12(9):1591–1605

    Article  CAS  Google Scholar 

  • Zhang Y, Su JB, Duan S, Ao Y, Dai JR, Liu J, Wang P, Li YG, Liu B, Feng DR, Wang JF, Wang HB (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7(1):1–14

    Article  Google Scholar 

  • Zhang RJ, Xia XJ, Lindsey K, da Rocha PSF (2012a) Functional complementation of dwf4 mutants of Arabidopsis by overexpression of CYP724A1. J Plant Physiol 169(4):421–428

    Article  CAS  Google Scholar 

  • Zhang C, Xu YY, Guo SY, Zhu JY, Huan Q, Liu HH, Wang Lei, Luo GZ, Wang XJ, Chong K (2012b) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8(4):e1002686

  • Zhang C, Bai MY, Chong K (2014) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33(5):683–696

    Article  CAS  Google Scholar 

  • Zhang XQ, Sun J, Cao XF, Song XW (2015) Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice. Plant Physiol 169(3):2118–2128

  • Zhang G, Song XG, Guo HY, Wu Y, Chen XY, Fang RX (2016) A small G protein as a novel component of the rice brassinosteroid signal transduction. Mol Plant 9(9):1260–1271

    Article  CAS  Google Scholar 

  • Zhao SQ, Hu J, Guo LB, Qian Q, Xue HW (2010) Rice leaf inclination2, a VIN3-like protein, regulates leaf angle through modulating cell division of the collar. Cell Res 20(8):935–947

    Article  CAS  Google Scholar 

  • Zhao SQ, Xiang JJ, Xue HW (2013) Studies on the rice LEAF INCLINATION1 (LC1), an IAA–amido synthetase, reveal the effects of auxin in leaf inclination control. Mol Plant 6(1):174–187

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the Key-Area Research and Development Program of Guangdong Province (2018B020202012), and the Natural Science Foundation of China (31671645).

Author information

Authors and Affiliations

Authors

Contributions

QZ and ZZ designed the project; QZ, GL, JJ, and JL performed the experiments; QZ, GL, JZ, HP, WW, and ZZ analyzed and interpreted the data; QZ, WW and ZZ wrote the paper.

Corresponding authors

Correspondence to Wenyi Wang or Zemin Zhang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Matthias Wissuwa.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1492 kb)

Supplementary file2 (DOCX 1052 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Liu, G., Jin, J. et al. RIP2 interacts with REL1 to control leaf architecture by modulating brassinosteroid signaling in rice. Theor Appl Genet 135, 979–991 (2022). https://doi.org/10.1007/s00122-021-04011-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-04011-w

Navigation