Skip to main content
Log in

Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Soil salinity is a major threat to crop productivity and quality worldwide. In order to reduce the negative effects of salinity stress, it is important to understand the genetic basis of salinity tolerance. Identifying new salinity tolerance QTL or genes is crucial for breeders to pyramid different tolerance mechanisms to improve crop adaptability to salinity. Being one of the major cereal crops, wheat is known as a salt-sensitive glycophyte and subject to substantial yield losses when grown in the presence of salt. In this study, both pot and tank experiments were conducted to investigate the genotypic variation present in 328 wheat varieties in their salinity tolerance at the vegetative stage. A Genome-Wide Association Studies (GWAS) were carried out to identify QTL conferring salinity tolerance through a mixed linear model. Six, five and eight significant marker-trait associations (MTAs) were identified from pot experiments, tank experiments and average damage scores, respectively. These markers are located on the wheat chromosomes 1B, 2B, 2D, 3A, 4B, and 5A. These tolerance alleles were additive in their effects and, when combined, increased tolerance to salinity. Candidate genes identified in these QTL regions encoded a diverse class of proteins involved in salinity tolerance in plants. A Na+/H+ exchanger and a potassium transporter on chromosome 5A (IWB30519) will be of a potential value for improvement of salt tolerance of wheat cultivars using marker assisted selection programs. Some useful genotypes, which showed consistent tolerance in different trials, can also be effectively used in breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

taken from the current experiment)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Acosta-Motos JR, Ortuño MF, Bernal-Vicente A, Diaz-Vivancos P, Sanchez-Blanco MJ, Hernandez JA (2017) Plant responses to salt stress: adaptive mechanisms. Agron 7:18

    Google Scholar 

  • Almeida P, Katschnig D, De Boer AH (2013) HKT transporters—state of the art. Int J Mol Sci 14:20359–20385

    PubMed  PubMed Central  Google Scholar 

  • Alqudah AM, Sallam A, Baenziger PS, Börner A (2020) GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: lessons from Barley–A review. J Adv Res 22:119–135

    PubMed  Google Scholar 

  • Ammar M, Pandit A, Singh R, Sameena S, Chauhan M, Singh A, Sharma P, Gaikwad K, Sharma T, Mohapatra T (2009) Mapping of QTLs controlling Na+, K+ and CI ion concentrations in salt tolerant indica rice variety CSR27. J Plant Biochem Biotechnol 18:139–150

    CAS  Google Scholar 

  • Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258

    CAS  PubMed  Google Scholar 

  • Apse MP, Sottosanto JB, Blumwald E (2003) Vacuolar cation/H+ exchange, ion homeostasis, and leaf development are altered in a T-DNA insertional mutant of AtNHX1, the Arabidopsis vacuolar Na+/H+ antiporter. Plant J 36:229–239

    CAS  PubMed  Google Scholar 

  • Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:14065823

  • Baxter I, Brazelton JN, Yu D, Huang YS, Lahner B, Yakubova E, Li Y, Bergelson J, Borevitz JO, Nordborg M (2010) A coastal cline in sodium accumulation in Arabidopsis thaliana is driven by natural variation of the sodium transporter AtHKT1; 1. PLoS Genet 6:e1001193

    PubMed  PubMed Central  Google Scholar 

  • Borjigin C, Schilling RK, Bose J, Hrmova M, Qiu J, Wege S, Situmorang A, Byrt C, Brien C, Berger B (2020) A single nucleotide substitution in TaHKT1; 5-D controls shoot Na+ accumulation in bread wheat. Plant Cell Environ 43:2158–2171

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58:301–308

    CAS  PubMed  Google Scholar 

  • Bulle M, Yarra R, Abbagani S (2016) Enhanced salinity stress tolerance in transgenic chilli pepper (Capsicum annuum L.) plants overexpressing the wheat antiporter (TaNHX2) gene. Mol Breed 36:36

    Google Scholar 

  • Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1; 5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928

    CAS  PubMed  PubMed Central  Google Scholar 

  • Byrt CS, Xu B, Krishnan M, Lightfoot DJ, Athman A, Jacobs AK, Watson-Haigh NS, Plett D, Munns R, Tester M (2014) The Na+ transporter, TaHKT1;5-D, limits shoot Na+ accumulation in bread wheat. Plant J 80:516–526

    CAS  PubMed  Google Scholar 

  • Chaurasia S, Singh AK, Songachan L, Sharma AD, Bhardwaj R, Singh K (2020) Multi-locus genome-wide association studies reveal novel genomic regions associated with vegetative stage salt tolerance in bread wheat (Triticum aestivum L.). Genomics 112:4608–4621

    CAS  PubMed  Google Scholar 

  • Chen ZC, Yamaji N, Fujii-Kashino M, Ma JF (2016) A cation-chloride cotransporter gene is required for cell elongation and osmoregulation in rice. Plant Physiol 171:494–507

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen T, Zhu Y, Chen K, Shen C, Zhao X, Shabala S, Shabala L, Meinke H, Venkataraman G, Chen ZH (2020) Identification of new QTL for salt tolerance from rice variety Pokkali. J Agron Crop Sci 206:202–213

    CAS  Google Scholar 

  • Choudhury S, Larkin P, Xu R, Hayden M, Forrest K, Meinke H, Hu H, Zhou M, Fan Y (2019) Genome wide association study reveals novel QTL for barley yellow dwarf virus resistance in wheat. BMC Genom 20:1–8

    Google Scholar 

  • Chu W, Li R, Liu J, Reimherr M (2020) Feature selection for generalized varying coefficient mixed-effect models with application to obesity GWAS. Ann Appl Stat 14:276–298

    PubMed  PubMed Central  Google Scholar 

  • Cuin TA, Betts SA, Chalmandrier R, Shabala S (2008) A root’s ability to retain K+ correlates with salt tolerance in wheat. J Exp Bot 59:2697–2706

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cuin TA, Parsons D, Shabala S (2010) Wheat cultivars can be screened for NaCl salinity tolerance by measuring leaf chlorophyll content and shoot sap potassium. Funct Plant Biol 37:656–664

    CAS  Google Scholar 

  • Dang Y, Routley R, McDonald M, Dalal R, Singh D, Orange D, Mann M (2006) Subsoil constraints in Vertosols: crop water use, nutrient concentration, and grain yields of bread wheat, durum wheat, barley, chickpea, and canola. Aust J Agric Res 57:983–998

    CAS  Google Scholar 

  • Darko E, Gierczik K, Hudak O, Forgó P, Pál M, Türkösi E, Kovács V, Dulai S, Majlath I, Molnar I (2017) Differing metabolic responses to salt stress in wheat-barley addition lines containing different 7H chromosomal fragments. PLoS One 12:e0174170

    PubMed  PubMed Central  Google Scholar 

  • Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R (2005) Control of sodium transport in durum wheat. Plant Physiol 137:807–818

    CAS  PubMed  PubMed Central  Google Scholar 

  • Devi R, Ram S, Rana V, Malik VK, Pande V, Singh GP (2019) QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 215:1–23

    Google Scholar 

  • Díaz De León JL, Escoppinichi R, Geraldo N, Castellanos T, Mujeeb-Kazi A, Röder MS (2011) Quantitative trait loci associated with salinity tolerance in field grown bread wheat. Euphytica 181:371–383

    Google Scholar 

  • Dubcovsky J, Santa Maria G, Epstein E, Luo M-C, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    CAS  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Fan Y, Shabala S, Ma Y, Xu R, Zhou M (2015) Using QTL mapping to investigate the relationships between abiotic stress tolerance (drought and salinity) and agronomic and physiological traits. BMC Genom 16:1–11

    Google Scholar 

  • Fan Y, Zhou G, Shabala S, Chen Z-H, Cai S, Li C, Zhou M (2016) Genome-wide association study reveals a new qtl for salinity tolerance in barley (Hordeum vulgare L.). Front Plant Sci. https://doi.org/10.3389/fpls.2016.00946

    Article  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Munns R, Colmer TD (2015) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431

    CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Verbyla AP, Lott G, Hassan M, Tester M, Wallwork H, McDonald GK (2010) Sodium exclusion QTL associated with improved seedling growth in bread wheat under salinity stress. Theor Appl Genet 121:877–894

    CAS  PubMed  Google Scholar 

  • Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T (2019) Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 10:1280

    PubMed  PubMed Central  Google Scholar 

  • Ghonaim MM, Mohamed HI, Omran AA (2021) Evaluation of wheat (Triticum aestivum L.) salt stress tolerance using physiological parameters and retrotransposon-based markers. Genet Resour Crop Evol 68:227–242

    CAS  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom

  • Huang J, Xue C, Wang H, Wang L, Schmidt W, Shen R, Lan P (2017) Genes of ACYL CARRIER PROTEIN family show different expression profiles and overexpression of ACYL CARRIER PROTEIN 5 modulates fatty acid composition and enhances salt stress tolerance in Arabidopsis. Front Plant Sci 8:987

    PubMed  PubMed Central  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    PubMed  PubMed Central  Google Scholar 

  • Hura T, Szewczyk-Taranek B, Hura K, Nowak K, Pawłowska B (2017) Physiological responses of Rosa rubiginosa to saline environment. Water, Air, Soil Pollut 228:81

    Google Scholar 

  • Imamura T, Yasui Y, Koga H, Takagi H, Abe A, Nishizawa K, Mizuno N, Ohki S, Mizukoshi H, Mori M (2020) A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Commun Biol 3:1–14

    Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia Q, Zheng C, Sun S, Amjad H, Liang K, Lin W (2018) The role of plant cation/proton antiporter gene family in salt tolerance. Biol Plant 62:617–629

    CAS  Google Scholar 

  • Jiang W, Pan R, Buitrago S, Wu C, Abou-Elwafa SF, Xu Y, Zhang W (2021) Conservation and divergence of the TaSOS1 gene family in salt stress response in wheat (Triticum aestivum L.). Physiol Mol Biol Plants 5:1–16

    Google Scholar 

  • Julkowska MM, Testerink C (2015) Tuning plant signaling and growth to survive salt. Trends Plant Sci 20:586–594

    CAS  PubMed  Google Scholar 

  • Kaler AS, Gillman JD, Beissinger T, Purcell LC (2020) Comparing different statistical models and multiple testing corrections for association mapping in soybean and maize. Front Plant Sci 10:1794

    PubMed  PubMed Central  Google Scholar 

  • Kang Y, Barry K, Cao F, Zhou M (2020) Genome-wide association mapping for adult resistance to powdery mildew in common wheat. Mol Biol Rep 47:1241–1256

    CAS  PubMed  Google Scholar 

  • Keisham M, Mukherjee S, Bhatla SC (2018) Mechanisms of sodium transport in plants—progresses and challenges. Int J Mol Sci 19:647

    PubMed Central  Google Scholar 

  • Kong D, Li M, Dong Z, Ji H, Li X (2015) Identification of TaWD40D, a wheat WD40 repeat-containing protein that is associated with plant tolerance to abiotic stresses. Plant Cell Rep 34:395–410

    CAS  PubMed  Google Scholar 

  • Kusmec A, Schnable PS (2018) Farm CPU pp efficient large-scale genomewide association studies. Plant Direct 2:e00053

    PubMed  PubMed Central  Google Scholar 

  • De Leon TB, Linscombe S, Subudhi PK (2017) Identification and validation of QTLs for seedling salinity tolerance in introgression lines of a salt tolerant rice landrace ‘Pokkali.’ PLoS One 12:e0175361

    PubMed  PubMed Central  Google Scholar 

  • Liang C, Zhang X, Chi X, Guan X, Li Y, Qin S, bo Shao H (2011) Serine/threonine protein kinase SpkG is a candidate for high salt resistance in the unicellular cyanobacterium Synechocystis sp. PCC 6803. PLoS One 6:e18718

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu W, Guo C, Li X, Duan W, Ma C, Zhao M, Gu J, Du X, Liu Z, Xiao K (2014) Overexpression of TaNHX3, a vacuolar Na+/H+ antiporter gene in wheat, enhances salt stress tolerance in tobacco by improving related physiological processes. Plant Physiol Biochem 76:17–28

    CAS  PubMed  Google Scholar 

  • Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z (2021) Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theor Appl Genet 134:171–189

    CAS  PubMed  Google Scholar 

  • Ma L, Zhou E, Huo N, Zhou R, Wang G, Jia J (2007) Genetic analysis of salt tolerance in a recombinant inbred population of wheat (Triticum aestivum L.). Euphytica 153:109–117

    CAS  Google Scholar 

  • Ma X, Liang W, Gu P, Huang Z (2016) Salt tolerance function of the novel C2H2-type zinc finger protein TaZNF in wheat. Plant Physiol Biochem 106:129–140

    CAS  PubMed  Google Scholar 

  • Ma F, Xu Y, Ma Z, Li L, An D (2018) Genome-wide association and validation of key loci for yield-related traits in wheat founder parent Xiaoyan 6. Mol Breed 38:1–15

    CAS  Google Scholar 

  • Masoudi B, Mardi M, Hervan EM, Bihamta MR, Naghavi MR, Nakhoda B, Amini A (2015) QTL mapping of salt tolerance traits with different effects at the seedling stage of bread wheat. Plant Mol Biol Rep 33:1790–1803

    CAS  Google Scholar 

  • McDonald GK, Taylor J, Verbyla A, Kuchel H (2013) Assessing the importance of subsoil constraints to yield of wheat and its implications for yield improvement. Crop Pasture Sci 63:1043–1065

    Google Scholar 

  • Monfared HH, Chew JK, Azizi P, Xue G-P, Ee S-F, Kadkhodaei S, Hedayati P, Ismail I, Zainal Z (2020) Overexpression of a rice monosaccharide transporter gene (OsMST6) confers enhanced tolerance to drought and salinity stress in Arabidopsis thaliana. Plant Mol Biol Rep 38:151–164

    CAS  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364

    CAS  PubMed  Google Scholar 

  • Mushke R, Yarra R, Kirti P (2019) Improved salinity tolerance and growth performance in transgenic sunflower plants via ectopic expression of a wheat antiporter gene (TaNHX2). Mol Biol Rep 46:5941–5953

    CAS  PubMed  Google Scholar 

  • Naeem M, Iqbal M, Shakeel A, Ul-Allah S, Hussain M, Rehman A, Zafar ZU, Ashraf M (2020) Genetic basis of ion exclusion in salinity stressed wheat: implications in improving crop yield. Plant Growth Regul 92:479–496

    CAS  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2010) The Arabidopsis thaliana HAK5 K+ transporter is required for plant growth and K+ acquisition from low K+ solutions under saline conditions. Mol Plant 3:326–333

    CAS  PubMed  Google Scholar 

  • Nieves-Cordones M, Alemán F, Martínez V, Rubio F (2014) K+ uptake in plant roots. the systems involved, their regulation and parallels in other organisms. J Plant Physiol 171:688–695

    CAS  PubMed  Google Scholar 

  • Orton TG, Mallawaarachchi T, Pringle MJ, Menzies NW, Dalal RC, Kopittke PM, Searle R, Hochman Z, Dang YP (2018) Quantifying the economic impact of soil constraints on Australian agriculture: a case-study of wheat. Land Degrad Dev 29:3866–3875

    Google Scholar 

  • Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2018) Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ 41:919–935

    CAS  PubMed  Google Scholar 

  • Oyiga BC, Ogbonnaya FC, Sharma RC, Baum M, Léon J, Ballvora A (2019) Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. Theor Appl Genet 132:323–346

    CAS  PubMed  Google Scholar 

  • Pang Y, Chen K, Wang X, Wang W, Xu J, Ali J, Li Z (2017) Simultaneous improvement and genetic dissection of salt tolerance of rice (Oryza sativa L.) by designed QTL pyramiding. Front Plant Sci 8:1275

    PubMed  PubMed Central  Google Scholar 

  • Qin Y, Tian Y, Liu X (2015) A wheat salinity-induced WRKY transcription factor TaWRKY93 confers multiple abiotic stress tolerance in Arabidopsis thaliana. B Biochem Biophys Res Commun 464:428–433

    CAS  Google Scholar 

  • Quamruzzaman M, Manik SMN, Shabala S, Zhou M (2021) Improving performance of salt-grown crops by exogenous application of plant growth regulators. Biomolecules 11:788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    CAS  PubMed  Google Scholar 

  • Sbei H, Sato K, Shehzad T, Harrabi M, Okuno K (2014) Detection of QTLs for salt tolerance in Asian barley (Hordeum vulgare L.) by association analysis with SNP markers. Breed Sci 64:378–388

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shabala S, Munns R (2012) Salinity stress: physiological constraints and adaptive mechanisms. Plant Stress Physiol 1:59–93

    Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19:687–691

    CAS  PubMed  Google Scholar 

  • Shen Y, Shen L, Shen Z, Jing W, Ge H, Zhao J, Zhang W (2015) The potassium transporter OsHAK21 functions in the maintenance of ion homeostasis and tolerance to salt stress in rice. Plant Cell Environ 38:2766–2779

    CAS  PubMed  Google Scholar 

  • Sui N, Tian S, Wang W, Wang M, Fan H (2017) Overexpression of glycerol-3-phosphate acyltransferase from Suaeda salsa improves salt tolerance in Arabidopsis. Front Plant Sci 8:1337

    PubMed  PubMed Central  Google Scholar 

  • USDA (2021) World Agricultural Production. Foreign Agricultural Service. WAP 03–21, March 2021. United States Department of Agriculture

  • Véry A-A, Nieves-Cordones M, Daly M, Khan I, Fizames C, Sentenac H (2014) Molecular biology of K+ transport across the plant cell membrane: what do we learn from comparison between plant species? J Plant Physiol 171:748–769

    PubMed  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Xu Y, Hu Z, Xu C (2018) Genomic selection methods for crop improvement: current status and prospects. Crop J 6:330–340

    Google Scholar 

  • Wu H, Shabala L, Barry K, Zhou M, Shabala S (2013) Ability of leaf mesophyll to retain potassium correlates with salinity tolerance in wheat and barley. Physiol Plant 149:515–527

    CAS  PubMed  Google Scholar 

  • Xu Y-F, An D-G, Liu D-C, Zhang A-M, Xu H-X, Li B (2012b) Mapping QTLs with epistatic effects and QTL× treatment interactions for salt tolerance at seedling stage of wheat. Euphytica 186:233–245

    Google Scholar 

  • Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L). PLoS One 7:e43079

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B, Hrmova M, Gilliham M (2020) High affinity Na+ transport by wheat HKT1;5 is blocked by K+. Plant Direct 4:e00275

  • Yang T, Zhang S, Hu Y, Wu F, Hu Q, Chen G, Cai J, Wu T, Moran N, Yu L (2014) The role of a potassium transporter OsHAK5 in potassium acquisition and transport from roots to shoots in rice at low potassium supply levels. Plant Physiol 166:945–959

    PubMed  PubMed Central  Google Scholar 

  • Yarra R, Kirti P (2019) Expressing class I wheat NHX (TaNHX2) gene in eggplant (Solanum melongena L.) improves plant performance under saline condition. Funct Integr Genomics 19:541–554

    CAS  PubMed  Google Scholar 

  • Yarra R, He S-J, Abbagani S, Ma B, Bulle M, Zhang W-K (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tissue Organ Cult 111:49–57

    CAS  Google Scholar 

  • Yarra R (2019) The wheat NHX gene family: potential role in improving salinity stress tolerance of plants. Plant Gene 18:100178

    CAS  Google Scholar 

  • Yin L, Zhang H, Tang Z, Xu J, Yin D, Zhang Z, Yuan X, Zhu M, Zhao S, Li X (2021) rmvp: A memory-efficient, visualization-enhanced, and parallel-accelerated tool for genome-wide association study. Genom Proteom Bioinform. https://doi.org/10.1016/j.gpb.2020.10.007

    Article  Google Scholar 

  • Yousfi F-E, Makhloufi E, Marande W, Ghorbel AW, Bouzayen M, Berges H (2017) Comparative analysis of WRKY genes potentially involved in salt stress responses in Triticum turgidum L. ssp. durum. Front Plant Sci 7:2034

    PubMed  PubMed Central  Google Scholar 

  • Zhao Y, Ai X, Wang M, Xiao L, Xia G (2016) A putative pyruvate transporter TaBASS2 positively regulates salinity tolerance in wheat via modulation of ABI4 expression. BMC Plant Biol 16:1–12

    Google Scholar 

  • Zhao Z, Zhang G, Zhou S, Ren Y, Wang W (2017) The improvement of salt tolerance in transgenic tobacco by overexpression of wheat F-box gene TaFBA1. Plant Sci 259:71–85

    CAS  PubMed  Google Scholar 

  • Zhao C, Zhang H, Song C, Zhu J-K, Shabala S (2020) Mechanisms of plant responses and adaptation to soil salinity. Innovation 1:100017

    PubMed  PubMed Central  Google Scholar 

  • Zhu M, Shabala S, Shabala L, Fan Y, Zhou M (2015) Evaluating predictive values of various physiological indices for salinity stress tolerance in wheat. J Agron Crop Sci 202:115–124

    Google Scholar 

  • Zhu M, Shabala L, Cuin TA, Huang X, Zhou M, Munns R, Shabala S (2016) Nax loci affect SOS1-like Na+/H+ exchanger expression and activity in wheat. J Exp Bot 67:835–844

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Mr Mark Livermore at the Tasmanian Institute of Agriculture, University of Tasmania for English editing.

Funding

This research was funded by the National Natural Science Foundation of China (31871535) and the Grains Research and Development Corporation (GRDC) of Australia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fangbin Cao or Meixue Zhou.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationship that could be construed as a potential conflict of interest.

Human and animal rights

This study does not include human or animal subjects.

Additional information

Communicated by Aimin Zhang.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 42 KB)

Supplementary file2 (PPTX 1552 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quamruzzaman, M., Manik, S.M.N., Shabala, S. et al. Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. Theor Appl Genet 135, 709–721 (2022). https://doi.org/10.1007/s00122-021-03996-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03996-8

Navigation