Skip to main content
Log in

Incomplete genome doubling enables to consistently enhance plant growth for maximum biomass production by altering multiple transcript co-expression networks in potato

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Cytochimera potato plants, which mixed with diploid and tetraploid cells, could cause the highest and significantly increased biomass yield than the polyploid and diploid potato plants.

Abstract

Polyploidization is an important approach in crop breeding for agronomic trait improvement, especially for biomass production. Cytochimera contains two or more mixed cells with different levels of ploidy, which is considered a failure in whole genome duplication. Using colchicine treatment with diploid (Dip) potato (Solanum chacoense) plantlets, this study generated tetraploid (Tet) and cytochimera (Cyt) lines, which, respectively, contained complete and partial cells with genome duplication. Compared to the Dip potato, we observed remarkably enhanced plant growth and biomass yields in Tet and Cyt lines. Notably, the Cyt potato straw, which was generated from incomplete genome doubling, was of significantly higher biomass yield than that of the Tet with a distinctively altered cell wall composition. Meanwhile, we observed that one layer of the tetraploid cells (about 30%) in Cyt plants was sufficient to trigger a gene expression pattern similar to that of Tet, suggesting that the biomass dominance of Cyt may be related to the proportion of different ploidy cells. Further genome-wide analyses of co-expression networks indicated that down-regulation (against Dip) of spliceosomal-related transcripts might lead to differential alternative splicing for specifically improved agronomic traits such as plant growth, biomass yield, and lignocellulose composition in Tet and Cyt plants. In addition, this work examined that the genome of Cyt line was relatively stable after years of asexual reproduction. Hence, this study has demonstrated that incomplete genome doubling is a promising strategy to maximize biomass production in potatoes and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The RNA sequence is available from the National Centre for Biotechnology Information (NCBI) as BioProject ID PRJNA591474.

References

  • Adams KL, Wendel JF (2005) Novel patterns of gene expression in polyploid plants. Trends Genet 21:539–543

    Article  CAS  PubMed  Google Scholar 

  • Aida R, Sasaki K, Yoshioka S, Noda N (2020) Chimerism of chrysanthemum stems changes at the nodes during vegetative growth. Plant Biotechnol 37:373–375

    Article  Google Scholar 

  • Auger DL, Gray AD, Ream TS, Kato A, Coe EH, Birchler JA (2005) Nonadditive gene expression in diploid and triploid hybrids of maize. Genetics 169:389–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamakhramah H, Halloran G, Wilson J (1984) Components of yield in diploid, tetraploid and hexaploid wheats (Triticum spp.). Ann Bot 54(1):51–60

    Article  Google Scholar 

  • Berthet S, Demont-Caulet N, Pollet B, Bidzinski P, Cezard L, Le Bris P, Borrega N, Herve J, Blondet E, Balzergue S, Lapierre C, Jouanin L (2011) Disruption of LACCASE4 and 17 results in tissue-specific alterations to lignification of Arabidopsis thaliana stems. Plant Cell 23:1124–1137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cai D, Chen J, Chen D, Dai B, Zhang W, Song Z, Yang Z, Du C, Tang Z, He Y, Zhang D, He G, Zhu Y (2007) The breeding of two polyploid rice lines with the characteristic of polyploid meiosis stability. Sci China C Life Sci 50:356–366

    Article  CAS  PubMed  Google Scholar 

  • Carputo D, Frusciante L, Peloquin SJ (2003) The role of 2n gametes and endosperm balance number in the origin and evolution of polyploids in the tuber-bearing solanums. Genetics 163:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae WB, Hong SJ, Gifford JM, Rayburn AL, Widholm JM, Juvik JA (2013) Synthetic polyploid production of miscanthus sacchariflorus, miscanthus sinensis, and miscanthus x giganteus. Global Change Biology Bioenergy 5:338–350

    Article  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Corneillie S, De Storme N, Van Acker R, Fangel JU, De Bruyne M, De Rycke R, Geelen D, Willats WGT, Vanholme B, Boerjan W (2019) Polyploidy affects plant growth and alters cell wall composition. Plant Physiol 179:74–87

    Article  CAS  PubMed  Google Scholar 

  • Dische Z, Pallavicini C, Kavasaki H, Smirnow N, Cizek LJ, Chien S (1962) Influence of the nature of the secretory stimulus on the composition of the carbohydrate moiety of glycoproteins of the submaxillary saliva. Arch Biochem Biophys 97:459–469

    Article  CAS  PubMed  Google Scholar 

  • Dong F, Song J, Naess S, Helgeson J, Gebhardt C, Jiang J (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007

    Article  CAS  Google Scholar 

  • Fasano C, Diretto G, Aversano R, D’Agostino N, Di Matteo A, Frusciante L, Giuliano G, Carputo D (2016) Transcriptome and metabolome of synthetic Solanum autotetraploids reveal key genomic stress events following polyploidization. New Phytol 210:1382–1394

    Article  CAS  PubMed  Google Scholar 

  • Filippis I, Lopez-Cobollo R, Abbott J, Butcher S, Bishop GJ (2013) Using a periclinal chimera to unravel layer-specific gene expression in plants. Plant J 75:1039–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank MH, Chitwood DH (2016) Plant chimeras: the good, the bad, and the “Bizzaria.” Dev Biol 419:41–53

    Article  CAS  PubMed  Google Scholar 

  • Fry SC (1988) The growing plant cell wall: chemical and metabolic analysis. Longman, London

    Google Scholar 

  • Fujishige I, Tanaka R, Taniguchi K (1996) Efficient isolation of non-chimeric tetraploids artificially induced in a stable culture of Haplopappus gracilis. Theor Appl Genet 92:157–162

    Article  CAS  PubMed  Google Scholar 

  • Geier T (2012) Chimeras: properties and dissociation in vegetatively propagated plants. In: Shu QY, Forster BP, Nakagawa H (eds) Plant mutation breeding and biotechnology. CABI, Wallingford, pp 191–201

    Chapter  Google Scholar 

  • Ha M, Lu J, Tian L, Ramachandran V, Kasschau KD, Chapman EJ, Carrington JC, Chen XM, Wang XJ, Chen ZJ (2009) Small RNAs serve as a genetic buffer against genomic shock in Arabidopsis interspecific hybrids and allopolyploids. Proc Natl Acad Sci USA 106:17835–17840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto-Freitas DY, Nassar NM (2013) Cytogenetic and anatomic behavior of cytochimeras and total polyploids in cassava. Genet Mol Res 12:4879–4894

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Lu XY, Wu HW, Xie YC, Peng Q, Gu LF, Wu JY, Wang YC, Reddy ASN, Dong SM (2020) Phytophthora effectors modulate genome-wide alternative splicing of host mRNAs to reprogram plant immunity. Mol Plant 13:1470–1484

    Article  CAS  PubMed  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9:1–13

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Perspective - genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  Google Scholar 

  • Li JX, Wang Y, Zhang LL, Liu B, Cao LW, Qi ZY, Chen LP (2013) Heritable variation and small RNAs in the progeny of chimeras of Brassica juncea and Brassica oleracea. J Exp Bot 64:4851–4862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Madadi M, Zhao K, Wang Y, Wang Y, Tang S-w, Xia T, Jin N, Xu Z, Li G, Qi Z, Peng L, Xiong Z (2021) Modified lignocellulose and rich starch for complete saccharification to maximize bioethanol in distinct polyploidy potato straw. Carbohydrate Polymers 265:118070

    Article  CAS  PubMed  Google Scholar 

  • Manzoor A, Ahmad T, Bashir MA, Hafiz IA, Silvestri C (2019) Studies on colchicine induced chromosome doubling for enhancement of quality traits in ornamental plants. Plants-Basel 8:194

    Article  CAS  PubMed Central  Google Scholar 

  • Moll C, von Lyncker L, Zimmermann S, Kagi C, Baumann N, Twell D, Grossniklaus U, Gross-Hardt R (2008) CLO/GFA1 and ATO are novel regulators of gametic cell fate in plants. Plant J 56:913–921

    Article  CAS  PubMed  Google Scholar 

  • Ortiz R, Ehlenfeldt MK (1992) The importance of endosperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60:105–113

    Article  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  CAS  PubMed  Google Scholar 

  • Parisod C, Holderegger R, Brochmann C (2010) Evolutionary consequences of autopolyploidy. New Phytol 186:5–17

    Article  CAS  PubMed  Google Scholar 

  • Peng L, Hocart CH, Redmond JW, Williamson RE (2000) Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211:406–414

    Article  CAS  PubMed  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satina S, Blakeslee AF, Avery AG (1940) Demonstration of the three germ layers in the shoot apex of Datura by means of induced polyploidy in periclinal chimeras. Am J Bot 27:895–905

    Article  Google Scholar 

  • Sattler MC, Carvalho CR, Clarindo WR (2016) The polyploidy and its key role in plant breeding. Planta 243:281–296

    Article  CAS  PubMed  Google Scholar 

  • Serapiglia MJ, Gouker FE, Hart JF, Unda F, Mansfield SD, Stipanovic AJ, Smart LB (2015) Ploidy level affects important biomass traits of novel shrub willow (Salix) hybrids. Bioenergy Res 8:259–269

    Article  Google Scholar 

  • Shelley J, David S (2018) The evolution of potato breeding. Plant Breeding Rev 41:169–214

    Google Scholar 

  • Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D (2008) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure 1617:1–16

    Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stupar RM, Bhaskar PB, Yandell BS, Rensink WA, Hart AL, Ouyang S, Veilleux RE, Busse JS, Erhardt RJ, Buell CR, Jiang JM (2007) Phenotypic and transcriptomic changes associated with potato autopolyploidization. Genetics 176:2055–2067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szymkowiak EJ, Sussex IM (1992) The internal meristem layer (L3) determines floral meristem size and carpel number in tomato periclinal chimeras. Plant Cell 4:1089–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tilney-Bassett RA (1986) Plant chimeras. Edward Arnold, London

    Google Scholar 

  • Wendel JF (2000) Genome evolution in polyploids. Plant Mol Biol 42:225–249

    Article  CAS  PubMed  Google Scholar 

  • Xiong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Z, Gaeta RT, Edger PP, Cao Y, Zhao K, Zhang S, Pires JC (2021) Chromosome inheritance and meiotic stability in allopolyploid Brassica napus. G3 11:jkaa011

    Article  PubMed  Google Scholar 

  • Yu GC, Wang LG, Han YY, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics-a Journal of Integrative Biology 16:284–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu Y, Xia EH, Yao QY, Gao LZ (2015) Autotetraploid rice methylome analysis reveals methylation variation of transposable elements and their effects on gene expression. Proc Natl Acad Sci U S A 112:201515170

    Article  Google Scholar 

  • Zhao Q, Nakashima J, Chen F, Yin YB, Fu CX, Yun JF, Shao H, Wang XQ, Wang ZY, Dixon RA (2013) Laccase is necessary and nonredundant with peroxidase for lignin polymerization during vascular development in arabidopsis. Plant Cell 25:3976–3987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was in part supported by the projects of National Natural Science Foundation of China (32070556, 32060503, 31571721, 31670296), the National 111 Project of Ministry of Education of China (B08032), the Inner Mongolia Science and Technology Project (2020GG0080) and Inner Mongolia Natural Science Foundation (2020ZD09).

Author information

Authors and Affiliations

Authors

Contributions

KZ completed the major experiments of potato polyploidy identification and bioinformatic analysis, and wrote the manuscript; NJ, LW, Zhijun X, JW, and JD participated in the potato polyploidy selection and characterization; MM completed the most potato biomass process experiments; Youmei W, ST, and Yanting W participated in the tissue culture, biomass chemical analysis, and experiment discussion; LP supervised biomass process project and finalized the manuscript, and Zhiyong X designed and supervised the potato polyploidy project.

Corresponding author

Correspondence to Zhiyong Xiong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Communicated by Jeffrey Endelman.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 195 KB)

Supplementary file2 (DOCX 38 KB)

122_2021_3976_MOESM3_ESM.tif

Fig. S1 Identification of cell ploidy in the different organs (root, stem, leaf, and flower) of Dip, Tet-1, and Cyt-1 samples at the flowering stage by 5S rDNA FISH (red signals). Scale bar, 10 µm. (TIF 32961 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Jin, N., Madadi, M. et al. Incomplete genome doubling enables to consistently enhance plant growth for maximum biomass production by altering multiple transcript co-expression networks in potato. Theor Appl Genet 135, 461–472 (2022). https://doi.org/10.1007/s00122-021-03976-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-021-03976-y

Navigation